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We introduce a new model of competition on growing networks. This extends the preferen-

tial attachment model, with the key property that node choices evolve simultaneously with

the network. When a new node joins the network, it chooses neighbours by preferential

attachment, and selects its type based on the number of initial neighbours of each type.

The model is analysed in detail, and in particular, we determine the possible proportions of

the various types in the limit of large networks. An important qualitative feature we find is

that, in contrast to many current theoretical models, often several competitors will coexist.

This matches empirical observations in many real-world networks.

2010 Mathematics subject classification: Primary 05C80

Secondary 60C05, 60G99

1. Introduction

A major challenge in complex networks is understanding the interplay between the

evolution of the network and the dynamical processes that take place on it. Many

networks evolve dynamically: for example, the citation graph grows every day with new

papers being published, and friendships are created and broken every minute. The changes

† Supported by NSF grant DMS 1106999 and by DOD ONR grant N000141110140.
‡ Supported by a UC Berkeley Graduate Fellowship, by NSF grant DMS 1106999 and by DOD ONR grant

N000141110140.

https://doi.org/10.1017/S0963548315000383 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000383
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Figure 1. Illustration of the model. Each node in the initial graph has a colour (type) from a finite set of

colours. At each time step a new node is added to the graph and connected to m existing nodes according to

linear preferential attachment (here m = 5). When the new node joins the graph it also adopts a colour: it picks

its colour according to a probability distribution which depends on the colours of its initial neighbours. See

Section 1.1 for details.

in network structure are closely related to the processes on these nodes: for example, the

content of a Facebook page is correlated with the friendship dynamics.

In the past fifteen years there have been many studies on processes on networks [6],

such as epidemic spreading [20], evolutionary games [19], and information cascades [30].

However, most considered the network as fixed, and then studied the process of interest

on static graphs. This static viewpoint hides the fact that the networks and the processes

on them coevolve. Although the study of such coevolution was initiated over a decade

ago [29], it is only recently beginning to be explored in greater depth (see [13, 16] and

references therein), and thus many questions still remain. In particular, in the context of

type adoption on networks, an important open problem is to understand the phenomenon

of coexistence of competing types.

Here, we present a simple connection which couples the growth of a network and nodal

dynamics. In particular, we focus on type adoption dynamics, where each node has a single

type from a finite set of types. When a new node joins the network, both its connections

to the existing nodes and its type are influenced by the current structure of the network.

As a particular instance of such a general model, we consider the dynamics where the

new node chooses its connections according to linear preferential attachment [5, 11, 10],

and then chooses its type based on how many of its neighbours are of a certain type; see

Figure 1 for an illustration.

This model is of interest in many cases where preferential attachment is a good

representation of the evolution of the network structure and where competition between

types occurs as soon as the node joins the network. A natural example is the network

of scientific papers linked by citations [26]. Often there are two opposing viewpoints on

an issue, leading to competition between the perspectives. Another example is that of

product adoption via word-of-mouth recommendations on social networks, such as a new

cell-phone user choosing a cell-phone provider based on her friends’ decisions.

A key feature of this model is the simplicity of its analysis. We explicitly calculate the

possible ratios of the types in the limit of large networks. The most important property of

the model is that for many settings of the parameters, none of the types dominate, which

matches empirical observations in many current networks. These results thus provide

a theoretical understanding of coexistence of types in preferential attachment networks.
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They should be compared to results on other models of competition on scale-free networks

where coexistence is rarely achieved, and typically the ‘winner takes all’ [25, 12]. (See also

[1, 17] for results on related models.) The chief difference between this model and related

ones in economics [2, 3], and marketing [4] is the explicit modelling of the underlying

network structure.

We next describe the model and our results in more detail.

1.1. Model

For simplicity, we describe the model in the case of two types, which we refer to as red and

blue colours (in the following, we use the terms ‘type’ and ‘colour’ interchangeably). The

model naturally generalizes to any number of types; see Section 3 for a description and

results. The main feature of the model is that it incorporates and couples two processes:

a network growing process and a type adoption process.

We consider a natural variant of the linear preferential attachment model [5, 11, 10]

as the network growing process.1 Starting from an initial graph G0, at each time step an

additional node v is added to the graph, together with m edges connecting v to existing

nodes in the graph. Each edge is chosen independently, and according to linear preferential

attachment, that is, the probability that a given edge connects v to a given existing node

u is proportional to the degree of u.2

The type adoption process on the network is as follows. All nodes in the initial graph

G0 start with a type, that is, they are either red or blue. Each additional node v receives

a colour when it is added to the graph, and this colour depends on the colours of the

nodes it connects to when it is added. Suppose that out of the m edges connecting the new

node v to existing ones, exactly k connect to a red node. Then, conditioned on this event,

v becomes red with probability pk and blue with probability 1 − pk . The probabilities

pk ∈ [0, 1], where 0 � k � m, are parameters of the model, and can capture a wide range

of behaviour. A natural choice is the linear model, when pk = k/m for all k. However,

nonlinear models, when pk �= k/m for some k, can capture diminishing and increasing

returns, and even more complex behaviour.

1.2. Results

We are interested in the fraction of nodes of each type. This corresponds to the fraction

of scientific papers sharing a viewpoint on a given topic or to the fraction of individuals

using a given company’s product, that is, the company’s market share. Our main results

characterize the possible limiting fractions of the colours as the size of the network goes to

infinity. The results thus provide a complete phase diagram of the asymptotic behaviour

of the process; see Figure 4 for an illustration. These show that if there is negative

1 The preferential attachment model was introduced by Barabási and Albert [5]; however, as pointed out by

Bollobás and Riordan [11], the definition in [5] left some details of the process up to interpretation. There

are several natural ways in which to define the process precisely: one option is the model introduced in [11],

while here we consider a slightly different variant (the ‘independent model’ in [10]).
2 In particular, if m > 1 then v might connect to an existing node with multiple edges, resulting in a multigraph.

Multiple edges between two nodes can be thought of as stronger ties between the agents represented by the

nodes.
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reinforcement, then the types coexist, while if there is strong positive reinforcement, then

the winner takes all. Our results precisely determine where the transition happens, and

show that for most parameter values the types coexist.

To describe our results precisely, we introduce some notation. Let Gn denote the graph

when n nodes have been added to the initial graph G0, let An and Bn, respectively, denote

the number of red and blue nodes, respectively, in Gn, and let

an :=
An

An + Bn

, bn :=
Bn

An + Bn

denote the corresponding normalized fractions. Furthermore, let Xn (resp. Yn) denote the

sum of the degrees of red (resp. blue) nodes in Gn, and let

xn :=
Xn

Xn + Yn

, yn :=
Yn

Xn + Yn

denote the normalized fractions. We are primarily interested in the asymptotic proportion

of red and blue nodes, that is, in the limits limn→∞ an and limn→∞ bn = 1 − limn→∞ an.

As we shall see, a key role in the asymptotic behaviour of the process is played by the

polynomial

P (z) =
1

2

m∑
k=0

(
m

k

)
zk(1 − z)m−k

(
pk − k

m

)
, (1.1)

and in particular its zero set, denoted by ZP := {z ∈ [0, 1] : P (z) = 0}. This is because, as

we shall show, {an}n�0 behaves approximately like the solution to a stochastic version of

the ordinary differential equation (ODE) dz/dt = P (z), and thus intuitively the trajectory

of {an}n�0 should approximate the trajectory {z(t)}t�0 of this ODE.

The following two theorems confirm this intuition. There is an important distinction

between the linear model and nonlinear models, which is due to the fact that in the linear

model the polynomial P is identically zero and thus ZP = [0, 1], while in nonlinear models

the zero set ZP is a finite set.

Theorem 1.1 (linear model). Suppose that pk = k/m for all 0 � k � m, and that X0, Y0 >

0. Then an converges almost surely as n → ∞. Furthermore, the limiting distribution of

a := lim
n→∞

an

has full support on the interval [0, 1], has no atoms (i.e., for every z ∈ [0, 1], P(a = z) = 0),

and depends only on X0, Y0, and m.

See Figure 2 for empirical histograms in the linear model with various initial parameters

and various values of m, which show that a wide variety of limiting behaviours is possible.

Theorem 1.2 (nonlinear models). Suppose that pk �= k/m for some 0 � k � m, and that

X0, Y0 > 0. Then an converges almost surely as n → ∞. Furthermore, the limit is a point in

the finite set ZP .
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Figure 2. Empirical histograms of an in the linear model for n = 105, from 2 × 105 simulations. Each subfigure

has different initial parameters: (a) A0 = B0 = 1, X0 = Y0 = 1, (b) A0 = B0 = 2, X0 = Y0 = 4, (c) A0 = B0 = 3,

X0 = Y0 = 9, (d) A0 = 1, B0 = 2, X0 = 1, Y0 = 3, (e) A0 = 1, B0 = 4, X0 = 1, Y0 = 11, (f) A0 = 2, B0 = 3,

X0 = 4, Y0 = 8. In each case empirical histograms for ten different values of m are plotted. See subfigure (e) for

the key to all plots.

In nonlinear models we thus know that the asymptotic proportion of red nodes

is contained in the finite zero set ZP . But which points z ∈ ZP arise as the limiting

proportion with positive probability? This depends on the behaviour of the polynomial

around the zero z ∈ ZP . Intuitively, since {an}n�0 is a stochastic system, we expect that

stable trajectories of the ODE dz/dt = P (z) should appear but unstable trajectories should

not. This intuition is confirmed and formalized in the following three theorems.

Theorem 1.3 (nonlinear models, stable equilibria). Suppose that pk �= k/m for some 0 �
k � m, and that X0, Y0 > 0. Suppose that z ∈ ZP ∩ (0, 1) is such that there exists an ε > 0

such that P > 0 on (z − ε, z) and P < 0 on (z, z + ε). Then P(limn→∞ an = z) > 0, that is,

an converges to z with positive probability. Similarly, if 0 ∈ ZP and P < 0 on (0, ε), or if

1 ∈ ZP and P > 0 on (1 − ε, 1), then there is a positive probability of convergence of an to

0 or 1, respectively.

Theorem 1.4 (nonlinear models, unstable equilibria). Suppose that pk �= k/m for some 0 �
k � m, and that X0, Y0 > 0. Suppose that z ∈ ZP ∩ (0, 1) is such that there exists an ε > 0

such that P < 0 on (z − ε, z) and P > 0 on (z, z + ε). Then P(limn→∞ an = z) = 0. Similarly,

if 0 ∈ ZP and P > 0 on (0, ε), or if 1 ∈ ZP and P < 0 on (1 − ε, 1), then the probability of

convergence of an to 0 or 1, respectively, is zero.
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Figure 3. Examples of the polynomial P and possible limiting proportions. In each case there is no bias towards

either colour, that is, pk + pm−k = 1 for all 0 � k � m. (a) Majority choice: pk = 1 if k > m/2 and pk = 0

otherwise (m = 5 in the figure). The possible limits are 0 and 1, that is, the winner takes all. (b) The parameters

here are m = 9, p5 = p6 = 0.5, p7 = p8 = p9 = 0.95. Such an example is plausible if the strength of the signal

from the neighbours matters: if 3 � k � 6, then the signal towards either colour is weak, so just flip a fair coin

to choose, but if 0 � k � 2 or 7 � k � 9 then there is a strong signal towards one of the colours, so pick that

colour with probability close to 1. In this example the possible limits are z1 ≈ 0.055, z2 = 0.5, z3 ≈ 0.945, and

there are also two zeros of P which cannot be limits. (c) This is an example where P has touchpoints. The

parameters are m = 6, p4 = 1031/1710, p5 = p6 = 35/38, and the two touchpoints are at z1 = 1/4 and z2 = 3/4.

Both of these, as well as z3 = 1/2, can be limits.

Theorem 1.5 (nonlinear models, touchpoints). Suppose that pk �= k/m for some 0 � k � m,

and that X0, Y0 > 0. Suppose that z ∈ ZP ∩ (0, 1) is such that there exists an ε > 0 such that

P is either strictly positive or strictly negative on the union of the intervals (z − ε, z) and

(z, z + ε). Then P(limn→∞ an = z) > 0.

See Figure 3 for an illustration of the polynomial P for various values of the parameters

{pk}0�k�m, and what the various limiting proportions can be in each case.

The theorems above provide a complete phase diagram of the asymptotic behaviour of

the process in the case of two types. To illustrate this, see Figure 4, which shows phase

diagrams for m = 3 and m = 4 when there is no bias towards either colour, that is, when

pk + pm−k = 1 for all 0 � k � m. This condition implies that P (z) = −P (1 − z) and so

1/2 ∈ ZP , but 1/2 need not be a limit point (see Figure 3).

Coexistence. In particular, the theorems above show that in many cases the two colours

coexist in the limit. Indeed, since P (0) = 1
2
p0 and P (1) = 1

2
(pm − 1), p0 = 0 or pm = 1 is

necessary for one of the colours to asymptotically take over the network. Whenever p0 > 0

and pm < 1 the two colours coexist in the limit, and thus the model provides a theoretical

understanding of coexistence in preferential attachment networks.

A natural extension of the model is to consider more than two colours. For clarity of

presentation, we postpone the discussion of this until later: see Section 3 for a description

of the model with many colours and the corresponding results and conjectures.

It is also natural to consider variants of the model with different underlying network

evolution models. For instance, consider the affine preferential attachment model, where a

given edge connects the new node v to a given existing node u with probability proportional

to the degree of u plus some fixed constant c which is greater than −1. This gives rise

to a random graph with power-law degree distribution with exponent 3 + c. The linear
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Figure 4. Phase diagrams when there is no bias towards either colour/type, that is, when pk + pm−k = 1 for

all 0 � k � m. Let qk := pk − k/m. (a) If q2 < 0 or if q2 + q3 � 0 and q3 < 0, then limn→∞ an = 1/2, that is,

in this case the network is split evenly among the two types in the limit. The linear model is the case of

q2 = q3 = 0. Finally, if q2 + q3 > 0 and q2 > 0, then let α = −q3/q2 ∈ [0, 1); the possible limits of an are then
1
2 ± 1

2

√
(3 − 3α)/(3 + α). In particular, when α = 0 then the winner takes all, and if α ∈ (0, 1), then the two types

coexist in the limit. (b) This is similar to (a). Here, if 2q3 + q4 > 0 and q4 > 0, then let β = −q4/q3 ∈ [0, 2); the

possible limits of an are then 1
2 ± 1

2

√
(2 − β)/(2 + β).

preferential attachment model is the special case with c = 0. The type adoption process

with affine preferential attachment is slightly more involved, so to keep the exposition

simple we do not go into details. However, the same techniques apply, and we get the same

results as above for c � 0. For c ∈ (−1, 0) the behaviour is more delicate, and we leave it

as an exercise to the reader to flesh out the details. See Section 4 for further discussion on

the affine preferential attachment model. Another natural variant is to consider uniform

attachment – this is even simpler than preferential attachment, and the same results apply.

We leave the understanding of other network evolution models for future work.

1.3. Outline of the paper

First, in Section 2 we prove the results described in Section 1.2. Then in Section 3 we

study the case of three or more types, and finally we conclude with open questions and

directions for future research in Section 4.

2. Proofs

This section contains the proofs of our main results described in Section 1.2, and is

structured as follows. First, in Section 2.1 we show how the asymptotic behaviour of

{an}n�0 is the same as that of the sum-of-degrees process {xn}n�0, which is more convenient

to study, as it is a Markov process. Then in Section 2.2 we study the linear model and

prove Theorem 1.1. Next in Section 2.3 we recall results from the theory of stochastic

approximation processes, and finally in Section 2.4 we prove our results concerning

nonlinear models.
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2.1. Reduction to the sum-of-degrees process

To understand the process {An}n�0 (and thus the normalized process {an}n�0), it is more

convenient to study the time evolution of the sum of the degrees of each type. The

reason for this is that the process {An}n�0 is not a Markov process, but the joint process

{(An,Xn)}n�0 is indeed Markov. It evolves as follows. Given (An,Xn), un+1 is drawn from

the binomial distribution with parameters m and xn. Subsequently, In+1 is drawn from the

Bernoulli distribution with parameter pun+1
. We then have

An+1 = An + In+1, (2.1)

Xn+1 = Xn + un+1 + mIn+1. (2.2)

The following lemma tells us that in order to understand the asymptotic behaviour of

{an}n�0, it is enough to understand the asymptotic behaviour of {xn}n�0. Consequently,

in the following we analyse the latter, as this is a Markov process.

Lemma 2.1. Suppose {xn}n�0 converges almost surely (a.s.) and let x := limn→∞ xn denote

the limit. If P (x) = 0 a.s., then {an}n�0 converges a.s. as well, and limn→∞ an = x a.s.

Proof. Let Fn denote the filtration of the process until time n. Given Fn, the probability

that the node added at time n + 1 is red is

P(An+1 − An = 1 | Fn) =

m∑
k=0

(
m

k

)
xkn(1 − xn)

m−kpk = xn +

m∑
k=0

(
m

k

)
xkn(1 − xn)

m−kqk

= xn + 2P (xn) =: f(xn),

where qk = pk − k/m. Thus E(An+1 − An | Fn) = f(xn). Define

Mn = An − A0 −
n−1∑
i=0

f(xi),

with initial condition M0 = 0. The previous calculation tells us that {Mn}n�0 is a martingale

with respect to the filtration Fn. Moreover, this martingale has bounded increments since

Mi+1 − Mi = Ai+1 − Ai − f(xi) ∈ [−1, 1], and thus limn→∞ Mn/n = 0 a.s.

Let x := limn→∞ xn. Since P (x) = 0, we have f(x) = x. Since f is continuous, we have

lim
n→∞

f(xn) = f(x) = x a.s.,

and thus the Cesàro mean of the sequence {f(xn)}n�0 also converges to the same limit:

lim
n→∞

1

n

n−1∑
i=0

f(xi) = x a.s.

The claim then follows from the fact that

Mn/n =
An

n
− A0

n
− 1

n

n−1∑
i=0

f(xi) and lim
n→∞

(
an − An

n

)
= 0.
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2.2. Linear model

Proof of Theorem 1.1. In the linear model, when pk = k/m for all k = 0, 1, . . . , m, we

have that P ≡ 0, and thus E(Xn+1 − Xn | Fn) = 2mxn. Since

xn+1 − xn =
Xn+1 − Xn − 2mxn

Sn+1
,

it follows that E(xn+1 − xn | Fn) = 0, that is, {xn}n�0 is a martingale. Since it is also

bounded, it converges almost surely. Lemma 2.1 then implies that {an}n�0 converges a.s.

as well, and limn→∞ an = limn→∞ xn a.s.

We use a variance argument to show that the distribution of x := limn→∞ xn has full

support on [0, 1]. First note that

(xn+1 − xn)
2 =

(
Xn+1 − Xn − 2mxn
S0 + 2m(n + 1)

)2

� 1

(n + 1)2
,

and consequently for any n0 we have

E((x − xn0
)2 | Fn0

) = lim
n→∞

E((xn − xn0
)2 | Fn0

)

=

∞∑
j=n0

E((xj+1 − xj)
2 | Fn0

)

�
∞∑

j=n0

1

(j + 1)2
� 1

n0
. (2.3)

Now let (r, r + ε) ⊂ (0, 1) be any fixed interval. Our goal is to show that P(x ∈ (r, r + ε)) >

0. Let n0 be an integer such that n0 � 18/ε2 and

P

(
xn0

∈
(
r +

ε

3
, r +

2ε

3

))
> 0

(this is possible since for sufficiently large n0 there exists a sequence of events such that

xn0
∈ (r + ε/3, r + 2ε/3)). Now condition on this event; (2.3) implies that

E

(
(x − xn0

)2
∣∣∣∣ xn0

∈
(
r +

ε

3
, r +

2ε

3

))
� 1

n0
� ε2

18
,

which in turn implies that

P

(
|x − xn0

| � ε

3

∣∣∣∣ xn0
∈

(
r +

ε

3
, r +

2ε

3

))
� 1

2
.

We conclude that

P(x ∈ (r, r + ε))

� P

(
|x − xn0

| � ε

3

∣∣∣∣ xn0
∈

(
r +

ε

3
, r +

2ε

3

))
P

(
xn0

∈
(
r +

ε

3
, r +

2ε

3

))
> 0.

Finally, showing that the distribution of x has no atoms can be done by adapting

arguments by Pemantle [21]. First, let us describe how the process {xn}n�0 is related to

time-dependent Pólya urn processes that Pemantle studies in [21].
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Time-dependent Pólya urn processes are generalizations of the classical Pólya urn

process, where the number of balls added to the urn is allowed to vary with time. Although

{xn}n�0 is not a time-dependent Pólya urn process, the following slight modification of

the preferential attachment process does give a time-dependent Pólya urn process. When

adding a new node v to the graph Gn = (Vn, En), add its m neighbours one by one, and

after adding each neighbour, update the degree of the neighbour. Let X̃n denote the sum

of the degrees of red nodes at time n in this model. Consider also a time-dependent Pólya

urn process {Zn}n�0 where at times t �= 0 modm a single ball is added to the urn, and

at times t = 0 modm the number of balls added to the urn is m + 1. It can be seen that

if X̃0 = Z0, then X̃n and Zmn have the same distribution. Thus Pemantle’s results [21,

Theorem 3, Theorem 4] apply directly and show that the distribution of limn→∞ x̃n (this

limit exists a.s.) has no atoms.

Since our setting is close to Pemantle’s original setting, we only sketch the proof that

the distribution of x has no atoms, and leave the details to the reader.

To show that the distribution of x has no atoms on (0, 1), we can adapt the variance

arguments of [21, Theorem 3]. Fix r ∈ (0, 1). Suppose on the contrary that P(x = r) > 0.

Then for every ε > 0 there exists n0 and some event A ∈ Fn0
having positive probability

such that P(xn → r | A) � 1 − ε; in fact, n0 can be as large as desired. Define

c :=
r(1 − r)m/2

10 × 2m/2

and let

N = max

{
S0

m
,

2

c2 min{r, 1 − r}

}
.

Then, via variance arguments, we can show the following two inequalities. First, for every

n � N,

P

(
sup
k�n

|xk − r| � c√
n

∣∣∣∣Fn

)
� 1

2
.

Second, defining

B =

{
|xn − r| � c√

n

}
,

we have that for every n � N,

P

(
inf
k�n

|xk − r| � c

2
√
n

∣∣∣∣Fn,B
)

� c2

16
.

Putting these together we have that for every n � N, the probability given Fn is at least

c2/32 that some xn+k will be at least c/
√
n away from r and no subsequent xn+k+� will

ever return to the interval [
r − c

2
√
n
, r +

c

2
√
n

]
.

This contradicts our initial assumption and so P(x = r) = 0.
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To show that the distribution of x has no atoms at 0 and 1, we can adapt the

arguments of [21, Theorem 4]. The main idea is a domination argument. Let {vn}n�0 be

the Pólya urn process where at each time step 2m balls are added to the urn, and let

v0 = x0. Then the distribution of xn can be dominated by the distribution of vn, in the

sense that E(h(xn)) � E(h(vn)) for every continuous bounded convex function h. In other

words, xn is smaller than vn in the convex order [28]. Since the limiting distribution of

{vn}n�0 is a beta distribution, which does not have an atom at zero, one can then take

hε(x) := max{0, 2 − x/ε} and let ε → 0 to conclude that the distribution of x cannot have

an atom at zero either. We refer the reader to [21, Theorem 4] for more details. See also

the proof of Theorem 1.4 for the endpoints in Section 2.4.

2.3. Stochastic approximation processes

The key observation in the analysis of the asymptotic behaviour of {xn}n�0 is that it

is a stochastic approximation process. Stochastic approximation was introduced in 1951

by Robbins and Monro [27], whose goal was to approximate the root of an unknown

function via evaluation queries that are necessarily noisy. There has been much follow-up

research; see, for instance, the monograph by Nevelson and Hasminskii [18]. The setup

of stochastic approximation arises naturally in the study of Pólya urn processes; see the

survey [24] for details. In particular, we use results of Hill, Lane and Sudderth [14],

who studied generalized (nonlinear) Pólya urn processes, and we also use subsequent

refinements by Pemantle [22, 23]. We state the main theorems here and refer to the

original papers for more details; see also the survey [24]. Stochastic approximation results

in higher dimensions will be discussed in Section 3.

Let {Zn}n�0 be a stochastic process in R adapted to a filtration {Fn}. Suppose that it

satisfies

Zn+1 − Zn =
1

n
(F(Zn) + ξn+1 + Rn), (2.4)

where F : R → R, E(ξn+1 | Fn) = 0, and the remainder terms Rn ∈ Fn go to zero and

also satisfy
∑∞

n=1 n
−1|Rn| < ∞ almost surely. Such a process is known as a stochastic

approximation process.

Intuitively, trajectories of a stochastic approximation process {Zn}n�0 should approx-

imate the trajectories {Z(t)}t�0 of the corresponding ODE dZ/dt = F(Z). Moreover, as

{Zn}n�0 is a stochastic system, we expect that stable trajectories of the ODE should

appear but unstable trajectories should not. This intuition is confirmed and formalized in

the following statements (quoted from the survey [24]); for proofs and more details see

the papers cited above.

Theorem 2.2 (convergence to the zero set of F). Suppose that {Zn} is a stochastic approx-

imation process and that E(ξ2
n+1 | Fn) � K for some finite constant K . If F is bounded and

continuous, then Zn converges almost surely to the zero set of F .

Theorem 2.3 (convergence to stable equilibria). Suppose that {Zn} is a stochastic approx-

imation process with a bounded and continuous F , and that E(ξ2
n+1 | Fn) � K for some finite
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constant K . Suppose that there is a point z and an ε > 0 with F(z) = 0, F > 0 on (z − ε, z)

and F < 0 on (z, z + ε). Then P(Zn → z) > 0. Similarly, when F : [0, 1] → R, if F(0) = 0 and

F < 0 on (0, ε) or if F(1) = 0 and F > 0 on (1 − ε, 1), then there is a positive probability of

convergence to 0 or 1, respectively.

Theorem 2.4 (non-convergence to unstable equilibria). Suppose that {Zn} is a stochastic ap-

proximation process with a bounded and continuous F . Suppose that there is a point z ∈ (0, 1)

and an ε > 0 with F(z) = 0, F < 0 on (z − ε, z) and F > 0 on (z, z + ε). Let x+ = max{x, 0}
and x− = − min{x, 0} denote the positive and negative parts of x, respectively. Suppose

further that when Zn ∈ (z − ε, z + ε) then E(ξ+
n+1 | Fn) and E(ξ−

n+1 | Fn) are bounded above

and below by positive constants depending only on ε. Then P(Zn → z) = 0.

Pemantle studied the case of touchpoints for generalized (nonlinear) Pólya urn processes

in [23]. His proof extends to the following result.

Theorem 2.5 (convergence to touchpoints). Suppose that {Zn} is a stochastic approximation

process with a bounded and continuously differentiable F , and that |ξn| � K a.s. for some

finite constant K . Suppose that z ∈ ZP is a touchpoint, that is, there exists an ε > 0 such that

either F > 0 on (z − ε, z) ∪ (z, z + ε) or F < 0 on (z − ε, z) ∪ (z, z + ε). Then P(Zn → z) > 0.

2.4. Nonlinear models

We first show that {xn}n�0 is a stochastic approximation process (i.e., that it satisfies (2.4))

with the function P as in (1.1). Subsequently we show how this implies our results in

Section 1.2 using the results described in Section 2.3.

Lemma 2.6. The process {xn}n�0 is a stochastic approximation process with the function

F = P as in (1.1). Furthermore, the noise term ξn is bounded: |ξn| � 2 for all n � 1.

Proof. From (2.2) we have that the conditional expectation of Xn+1 − Xn is

E(Xn+1 − Xn | Fn) =

m∑
k=0

(
m

k

)
xkn(1 − xn)

m−k(k + mpk) = 2mxn + 2mP (xn).

One can check that

xn+1 − xn =
Xn+1 − Xn − 2mxn

Sn+1

and consequently

E(xn+1 − xn | Fn) =
2m

Sn+1
P (xn),

with P as in (1.1). We can then write {xn}n�0 as a stochastic approximation process as

claimed in the statement of the lemma, that is, we can write

xn+1 − xn =
1

n
(P (xn) + ξn+1 + Rn)
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with appropriately defined ξn+1 and Rn. Define ξn+1 as

ξn+1 = n(xn+1 − xn − E(xn+1 − xn | Fn)). (2.5)

The remainder term Rn can then be written as

Rn = − S0 + 2m

S0 + 2m(n + 1)
P (xn).

Clearly Rn ∈ Fn. Let us now show that
∑∞

n=1 n
−1|Rn| < ∞. A crude bound on P is

|P (t)| � 1

2

m∑
k=0

(
m

k

)
|pk − k/m|tk(1 − t)m−k � 1

2

m∑
k=0

(
m

k

)
tk(1 − t)m−k =

1

2
.

Therefore

|Rn| � 1

2

S0 + 2m

S0 + 2m(n + 1)
,

so indeed we have
∑∞

n=1 n
−1|Rn| < ∞.

Finally, to bound the noise term, notice that

|xn+1 − xn| =

∣∣∣∣Xn+1 − Xn − 2mxn
S0 + 2m(n + 1)

∣∣∣∣ � 2m

2m(n + 1)
=

1

n + 1
.

Then using (2.5) and the triangle inequality, we get that |ξn| � 2.

The results in Section 1.2 now follow. First, note that Lemma 2.1 implies that it is

enough to show the claims in Theorems 1.2, 1.3, 1.4, and 1.5 for the process {xn}n�0

(instead of for the process {an}n�0).

Proof of Theorem 1.2. This follows directly from Lemma 2.6 and Theorem 2.2.

Proof of Theorem 1.3. This follows directly from Lemma 2.6 and Theorem 2.3.

The proof of Theorem 1.4 is more involved. This is in line with related work in the

literature, where conditions for non-convergence to unstable equilibria are more difficult

to find than similar results for convergence to stable equilibria (see [24] for a discussion).

Recall the proof of Theorem 1.1, where we showed that the limiting distribution in

the linear model has no atoms: we used a variance argument for points in (0, 1), and a

domination argument for the endpoints 0 and 1. Our proof of Theorem 1.4 follows similar

lines.

We first proceed by proving Theorem 1.4 for points z ∈ (0, 1) ∩ ZP . Intuitively, the

process has sufficient noise which prevents it from converging to z. The following lemma

is key to bounding the noise of the process from below. Its proof is simple when p0 < 1

and pm > 0; the proof is only lengthy because it deals with the special cases when p0 = 1

or pm = 0.

Lemma 2.7. Suppose that the parameters {pk}0�k�m do not fall into one of the following

three cases: (a) pk = 0 for all 0 � k � m, (b) pk = 1 for all 0 � k � m, (c) m = 1, p0 = 1,
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p1 = 0. Suppose that z ∈ (0, 1) ∩ ZP . Then there exist integers k1 and k2 such that k1 <

2mz < k2 and, if xn ∈ (δ, 1 − δ) for some δ > 0, then the probabilities P(Xn+1 − Xn = k1 |
Fn) and P(Xn+1 − Xn = k2 | Fn) are bounded away from zero by a positive function of δ

and the parameters {pk}0�k�m.

Proof. In the following we always assume that xn ∈ (δ, 1 − δ). If p0 < 1 then we can

choose k1 = 0 since

P(Xn+1 − Xn = 0 | Fn) = (1 − xn)
m(1 − p0) � δm(1 − p0).

Similarly, if pm > 0 then we can choose k2 = 2m, since

P(Xn+1 − Xn = 2m | Fn) = xmn pm � δmpm.

The rest of the proof deals with the cases when either p0 = 1 or pm = 0.

First consider the case when p0 > 0 and p1 = p2 = · · · = pm = 0. In this case

P (s) =
1

2
[p0(1 − s)m − s],

which is decreasing in [0, 1], so it has a single zero in (0, 1). In fact, P (1/2) < 0, so the

single zero of P in (0, 1) is in (0, 1/2), and thus we can take k2 = m. If p0 < 1 then we

can take k1 = 0 as described above. Finally, if p0 = 1 and m > 2, then we can take k1 = 1.

This is because the zero of P in (0, 1) is in (1/2m, 1/2), which follows from the fact that

P (1/2m) > 0. The case when p0 = p1 = · · · = pm−1 = 1 and pm < 1 follows similarly.

Now we can assume that there exist 1 � i � m and 0 � j � m − 1 such that pi > 0 and

pj < 1. This implies that

P(Xn+1 − Xn = j | Fn) � δm(1 − pj) > 0, P(Xn+1 − Xn = m + i | Fn) � δmpi > 0.

Thus if z = 1/2 then we can take k1 = j and k2 = m + i. If 0 < z < 1/2 then we can again

take k2 = m + i, and we just need to show the existence of an appropriate k1. Assume by

contradiction that there does not exist an appropriate k1, that is, for all � < 2mz, p� = 1.

Then we have

P (s) � 1

2

[ ∑
0�k<2mz

(
m

k

)
sk(1 − s)m−k − s

]
=

1

2

[
1 − s −

∑
2mz�k�m

(
m

k

)
sk(1 − s)m−k

]
.

By Markov’s inequality for a binomial random variable, this latter sum evaluated at z

is at most 1/2, and since z < 1/2, we must have P (z) > 0, which is a contradiction. The

case of 1/2 < z < 1 is similar.

Proof of Theorem 1.4 for z ∈ (0, 1). This follows from Lemma 2.6 and Theorem 2.4. The

only condition of Theorem 2.4 that needs to be checked additionally is that E(ξ+
n+1 | Fn)

and E(ξ−
n+1 | Fn) are bounded away from zero by positive numbers when xn ∈ (z − ε, z + ε)

for sufficiently small ε > 0; this can be done using Lemma 2.7. In the special cases (a), (b),

and (c) described in Lemma 2.7, the statement of Theorem 1.4 is vacuously true, since in

each case the polynomial P has no zeros at which it is increasing. Thus we may assume
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that we are not in these special cases, and we can use Lemma 2.7. Recall that

ξn+1 =
n

Sn+1
{Xn+1 − Xn − 2m(xn + P (xn))}.

Define ε̃ := 1
2
min{2mz − k1, k2 − 2mz}, where k1 and k2 are given by Lemma 2.7, and let

ε > 0 be small enough such that whenever xn ∈ (z − ε, z + ε), necessarily 2m(xn + P (xn)) ∈
(2mz − ε̃, 2mz + ε̃). If xn ∈ (z − ε, z + ε) then we have

E(ξ+
n+1 | Fn) � n

Sn+1
ε̃P(Xn+1 − Xn = k2 | Fn),

where

lim
n→∞

n

Sn+1
=

1

2m
,

and by Lemma 2.7 the probability P(Xn+1 − Xn = k2 | Fn) is bounded from below by

a positive function of z, ε, and the parameters {pk}0�k�m. We can similarly bound

E(ξ−
n+1 | Fn) from below.

We next prove Theorem 1.4 for the endpoints 0 and 1. The main idea of the proof is to

compare the behaviour near the endpoints of our process of interest to that of a standard

Pólya urn process where 2m balls are added at each time step. In order to formalize this,

we make use of several different stochastic orders; we refer to [28] for an overview of

these. We proceed by defining these stochastic orders and stating a few results on them,

before proving Theorem 1.4.

Definition (stochastic orders). Let X and Y be random variables.

• We say that X is smaller than Y in the usual stochastic order (denoted by X �st Y ) if

E(φ(X)) � E(φ(Y )) for all increasing continuous functions φ : R → R for which these

expectations exist.

• We say that X is smaller than Y in the convex order (denoted by X �cx Y ) if E(φ(X)) �
E(φ(Y )) for all continuous convex functions φ : R → R for which these expectations

exist.

• We say that X is smaller than Y in the increasing convex order (denoted by X �icx Y )

if E(φ(X)) � E(φ(Y )) for all increasing continuous convex functions φ : R → R for

which these expectations exist.

Lemma 2.8. Two random variables X and Y satisfy X �icx Y if and only if there is a

random variable Z such that X �st Z �cx Y .

Proof. See [28, Theorem 4.A.6 (a)].

Lemma 2.9. Let X and Y be two random variables with cumulative distribution functions

F and G, respectively, and bounded supports. Suppose that E(X) � E(Y ), and also that if

t1 < t2 and G(t1) < F(t1) then G(t2) � F(t2). Then X �icx Y .

Proof. See [28, Theorem 4.A.22 (b)].
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Lemma 2.10. Consider the standard Pólya urn process where 2m balls are added at each

time step. Let x1
n and x2

n be the proportions of red balls at the nth step of two realizations

of this process. If x1
n �cx x

2
n, then x1

n+1 �cx x
2
n+1, that is, the Pólya urn process preserves

dominance in the convex order.

Proof. See Proposition 1 in [21], in particular equation (13).

Proof of Theorem 1.4 for the endpoints. We prove non-convergence to 1 when P (1) = 0

and P < 0 on (1 − ε, 1) for some ε > 0; the proof for the other endpoint is analogous. In

the following fix 0 < ε < 1/m.

The main idea of the proof is to compare the behaviour near 1 of our process of interest

to that of a standard Pólya urn process where 2m balls are added at each time step. To

aid in this comparison we also introduce an auxiliary process which is a combination of

these two. We begin by describing these processes.

Our process of interest is {Xn}n�0, along with its normalized process {xn}n�0. Let

{Xn}n�0 denote the process of the number of red balls in a standard Pólya urn process

where 2m balls are added at each time step and the initial conditions are the same as those

for the process {Xn}n�0, that is, X0 = X0. Let {xn}n�0 denote the normalized process, that

is,

xn =
Xn

S0 + 2mn
.

Let {X̃n}n�0 denote the auxiliary process, with initial condition X̃0 = X0, and let {x̃n}n�0

denote the normalized process, that is,

x̃n =
X̃n

S0 + 2mn
.

We define this auxiliary process as follows. For 1 − ε < x � 1, given x̃n = x let X̃n+1 have

the same distribution as Xn+1 given xn = x. For x � 1 − ε, let

P(X̃n+1 = X̃n | x̃n = x) = 1 − x and P(X̃n+1 = X̃n + 2m | x̃n = x) = x.

In other words, when x̃n > 1 − ε then evolve the auxiliary process according to our process

of interest, and when x̃n � 1 − ε then evolve it as a Pólya urn process.

We first show that it suffices to prove the claim for the auxiliary process, that is, it

suffices to show that P(limn→∞ x̃n = 1) = 0. Define the following events:

An :=
{

lim
k→∞

xk = 1, xk > 1 − ε for all k � n
}
,

Ãn :=
{

lim
k→∞

x̃k = 1, x̃k > 1 − ε for all k � n
}
.

If P(limn→∞ xn = 1) > 0, then there exists n0 < ∞ such that P(An0
) > 0. In particular,

there exists y0 ∈ (1 − ε, 1) such that both probabilities P(xn0
� y0) and P(An0

| xn0
= y0)

are positive. In fact, we claim that P(An0
| xn0

= y) is positive for all y0 � y < 1.

To see this, consider two realizations of our process, {X1
n}n�0 and {X2

n}n�0, together

with the normalized processes {x1
n}n�0 and {x2

n}n�0. Given 1 − ε < x1
n < x2

n < 1, we can
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couple X1
n+1 and X2

n+1 such that for any 0 � k � 2m, X1
n+1 − X1

n = k implies that either

X2
n+1 − X2

n = k or X2
n+1 − X2

n = 2m. This is possible due to two facts. First, since ε < 1/m,

on the interval (1 − ε, 1) the function x 
→ xm is increasing, while for 0 � k < m, the

functions x 
→ xk(1 − x)m−k are decreasing. Consequently

P(Bin(m, x1
n) = m) < P(Bin(m, x2

n) = m),

and for 0 � k < m,

P(Bin(m, x1
n) = k) > P(Bin(m, x2

n) = k),

where Bin(m, x) denotes a binomial random variable with parameters m and x. Second,

P (1) = 0 implies that pm = 1. Repeated application of this coupling shows that for any

1 − ε < y1 < y2 < 1 we have

P(An | xn = y1) � P(An | xn = y2);

in particular, we have that

P(An0
| xn0

= y) � P(An0
| xn0

= y0)

for all y � y0.

Now consider the auxiliary process. Then we have P(x̃n0
� y0) > 0. Moreover, if xn0

=

x̃n0
, on the event An0

we can couple the processes {xn}n�n0
and {x̃n}n�n0

so that xn = x̃n
for all n � n0, which shows that

P(Ãn0
| x̃n0

= y) � P(An0
| xn0

= y0) > 0

for all y � y0. In particular, this shows that P(limn→∞ xn = 1) > 0 implies P(limn→∞ x̃n =

1) > 0. Thus it suffices to show that P(limn→∞ x̃n = 1) = 0.

We claim that x̃n �icx xn implies P(limn→∞ x̃n = 1) = 0. To see this, for δ > 0 define

the function gδ : [0, 1] → [0, 2] by gδ(x) = max{0, 2 − 1/δ + x/δ}. This is an increasing

continuous convex function, and so x̃n �icx xn implies that

P(x̃n > 1 − δ) � E(gδ(x̃n)) � E(gδ(xn)) � 2P(xn > 1 − 2δ). (2.6)

We know that the limiting distribution of xn is a beta distribution, and thus

lim
δ→0

lim
n→∞

P(xn > 1 − 2δ) = 0.

By (2.6) this then implies that P(limn→∞ x̃n = 1) = 0.

We prove X̃n �icx Xn (which is equivalent to x̃n �icx xn) by induction on n; for n = 0

this is immediate since the initial conditions agree. Now fix a positive integer n, and

consider a random variable X which attains integer values in the interval [X0, S0 + 2mn],

and let

x =
X

S0 + 2mn
.

Let X denote a random variable with distribution P(X = X + 2m | X) = x and P(X =

X | X) = 1 − x. Similarly, let X̃ denote a random variable with distribution the same as

that of X̃n+1 conditioned on X̃n = X. Following Pemantle [21], the induction step follows

from the following two claims: (i) X̃ �icx X, and (ii) X �icx Y implies that X �icx Y .
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First, it is enough to show that for any fixed r, conditioned on x = r we have X̃ �icx X;

one can then integrate out the conditioning to get (i). We show this by checking the

conditions of Lemma 2.9. First, when r � 1 − ε we have

E(X̃ | x = r) = E(X | x = r)

by the definition of the auxiliary process. If r > 1 − ε then we have

E(X | x = r) = r(S0 + 2mn) + 2mr,

while

E(X̃ | x = r) = r(S0 + 2mn) + 2m(r + P (r)).

Since r > 1 − ε, P (r) < 0, and thus

E(X̃ | x = r) < E(X | x = r).

This shows that

E(X̃ | x = r) � E(X | x = r).

The other condition of Lemma 2.9 holds automatically due to the fact that conditioned

on X = �, the distribution of X is supported on the two values {�, � + 2m}, while the

support of the distribution of X̃ is contained in the interval [�, � + 2m].

In view of Lemmas 2.8 and 2.10, to show (ii) it is enough to show that X �st Y

implies X �st Y , that is, for any increasing function φ we have E(φ(X)) � E(φ(Y )). By

conditioning on X and Y , we have

E(φ(X)) = E(φ(X)) and E(φ(Y )) = E(φ(Y )),

where φ(t) := φ(t)(1 − αt) + φ(t + 2m)αt, where α = (S0 + 2mn)−1 and t is such that 0 �
αt � 1. Since X �st Y , we only need to show that φ is increasing. Indeed, if t1 < t2 then

φ(t2) − φ(t1) = (φ(t2 + 2m) − φ(t1 + 2m))αt1 + (φ(t2) − φ(t1))(1 − αt1)

+ (φ(t2 + 2m) − φ(t2))α(t2 − t1),

which is non-negative, since all of the terms on the right-hand side are non-negative.

Proof of Theorem 1.5. This follows directly from Lemma 2.6 and Theorem 2.5.

3. Many colours/types

It is both natural and important to study competition between more than two

colours/types. The model naturally extends in this direction, and in this section we present

our results regarding N � 3 competing types. In the following, vectors will be denoted

using boldface, subscripts typically correspond to time and superscripts correspond to the

indices of types. Furthermore, denote by ΔN the probability simplex in R
N .

The natural extension of the model to multiple competing types is as follows. At time

zero, there is a graph G0, where each node is of exactly one of the N types. At each time

step a new node is added to the graph, and is connected to m nodes of the original graph
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according to linear preferential attachment. The types of these m neighbours induce a

vector of types u, where ui is the number of neighbours of type i. The type of the new

node is then determined according to a random draw from the distribution pu = {piu}i∈[N].

The probabilities {piu}u,i are parameters of the model.

As in the case of two types, our primary interest is in the fraction of nodes of each

type. Let Ai
n denote the number of nodes of type i at time n, and let An = (A1

n, . . . , A
N
n )

denote the resulting vector of types. Let an denote the normalized vector of types, such

that

N∑
i=1

ain = 1.

Furthermore, let Xi
n denote the sum of the degrees of type i nodes at time n, let

X n = (X1
n , . . . , X

N
n )

denote the resulting vector of degrees, and let xn be the normalized vector of degrees,

such that

N∑
i=1

xin = 1.

As in the N = 2 case, there is a clear distinction between the linear model, when

piu = ui/m for all u and i ∈ [N], and nonlinear models, when there exist u and i ∈ [N] such

that piu �= ui/m. In fact, the linear model for N � 3 types reduces to the linear model for

two types. This is because in the linear model, if we want to study the evolution of the size

of type i, then we can group all other types into a single ‘mega-type’, denoted by −i, and

run the process with two types: type i and ‘mega-type’ −i. Due to linearity, the original

process with N types and the process with type i and ‘mega-type’ −i can be coupled

such that the evolution of type i is identical in the two processes. Consequently, in the

linear model all the results of the N = 2 case apply. In particular, we have the following

theorem.

Theorem 3.1 (linear model). Assume that piu = ui/m for all u and i ∈ [N], and that Xi
0 > 0

for all i ∈ [N]. Then an converges almost surely, and the limiting distribution has full support

on ΔN , and no atoms.

In nonlinear models, as we will see later, a key role in the asymptotic behaviour of the

process {an}n�0 is played by the vector field

P(y) =
1

2

N∑
i=1

∑
u

(
m

u

)
(y)u

[
piu − ui

m

]
δi, (3.1)

where (
m

u

)
=

m!

u1! · · · uN!
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denotes the multinomial coefficient, (y)u = (y1)u
1
(y2)u

2 · · · (yN)u
N

, and δi is the N-dimen-

sional unit vector whose ith coordinate is 1 and all other coordinates are 0. We let

ZP := {y ∈ ΔN : P(y) = 0}

denote the zero set of this vector field on the probability simplex; this will be important

later.

The behaviour of the process in the general nonlinear model with multiple types is

involved, and its complete theoretical analysis is as yet out of our reach. Nonetheless,

based on partial theoretical results, we conjecture the following asymptotic behaviour,

which is similar to that in the case of two types.

Conjecture 3.2 (Nonlinear models). Assume that there exist u and i ∈ [N] such that piu �=
ui/m, and that Xi

0 > 0 for all i ∈ [N]. Then an converges almost surely and the limit is a

point in the zero set ZP .

In the rest of this section we describe theoretical progress towards this conjecture. As

in the case of two competing types, the problem can be cast in a (multidimensional)

stochastic approximation framework.

The process {An}n�0 is not a Markov process, so we study the joint process {(An,X n)}n�0,

which is indeed Markov. It evolves as follows. Given (An,X n), a vector un+1 is drawn from

the multinomial distribution with parameters m and xn. Subsequently, an index In+1 ∈ [N]

is chosen from the distribution pun+1
. We then have

An+1 = An + δIn+1 , (3.2)

X n+1 = X n + un+1 + mδIn+1 . (3.3)

Before analysing the process {xn}n�0, let us show that in order to prove Conjecture 3.2

on the asymptotic behaviour of {an}n�0, it is sufficient to prove a similar result on the

asymptotic behaviour of {xn}n�0.

Lemma 3.3. Assume that there exist u and i ∈ [N] such that piu �= ui/m, and that Xi
0 > 0

for all i ∈ [N]. Assume that xn converges almost surely and the limit is a point in the zero

set ZP . Then an converges almost surely and limn→∞ an = limn→∞ xn ∈ ZP .

Proof. This is similar to the proof of Lemma 2.1. We have seen that

E(An+1 − An | Fn) = E(δIn+1 | Fn) =

N∑
i=1

∑
u

(
m

u

)
(xn)

upiuδi

= xn +

N∑
i=1

∑
u

(
m

u

)
(xn)

u

[
piu − ui

m

]
δi = xn + 2P(xn) =: f(xn).

Let M 0 = 0 and define the martingale

M n := An − A0 −
n−1∑
j=0

f(xj).
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This martingale has bounded increments, and thus limn→∞ M n/n = 0 a.s. By the definition

of the martingale, this shows that a.s.

lim
n→∞

[
an − 1

n

n−1∑
j=0

f(xj)

]
= 0.

Now if the limit limn→∞ xn exists a.s., and any limit point x satisfies P(x) = 0, then also

f(x) = x, and thus the limit of the Cesàro mean of the sequence {f(xn)}n�0 also converges

to the same limit point. This then implies that the limit limn→∞ an exists a.s. and is equal

to limn→∞ xn.

The key observation in the analysis of the asymptotic behaviour of {xn}n�0 is that it

is a stochastic approximation process. In higher dimensions, a stochastic approximation

process is defined as follows. Let Zn be a stochastic process in the Euclidean space R
N

and adapted to a filtration {Fn}n�0. Suppose that it satisfies

Zn+1 − Zn =
1

n
(F (Zn) + ξn+1 + Rn),

where F is a vector field on R
N , E(ξn+1 | Fn) = 0, and the remainder terms Rn ∈ Fn

go to zero and satisfy
∑∞

n=1 n
−1‖Rn‖ < ∞ a.s. Such a process is known as a stochastic

approximation process.

Lemma 3.4. The process {xn}n�0 is a stochastic approximation process with the vector field

P as in (3.1). Furthermore, the noise term ξn is bounded: ‖ξn‖1 � 2N for all n � 1.

Proof. From (3.3) we have that

E(X n+1 − X n | Fn) = E(un+1 | Fn) + mE(δIn+1 | Fn).

Given Fn, un+1 is multinomial with parameters m and xn, and so E(un+1 | Fn) = mxn. By

construction, we have that

E(δIn+1 | Fn) =

N∑
i=1

∑
u

(
m

u

)
(xn)

upiuδi.

Let S0 denote the sum of the degrees in G0, and let Sn = S0 + 2mn. A simple calculation

gives that

xn+1 − xn =
X n+1 − X n − 2mxn

Sn+1
,

and so we have

E(xn+1 − xn | Fn) =
m

Sn+1

N∑
i=1

∑
u

(
m

u

)
(xn)

u

[
piu − ui

m

]
δi =

2m

Sn+1
P(xn).

We can then write {xn}n�0 as a stochastic approximation process:

xn+1 − xn =
1

n
[P(xn) + ξn+1 + Rn],
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where

ξn+1 = n{xn+1 − xn − E(xn+1 − xn | Fn)} (3.4)

is the martingale term, and the remainder term is

Rn = − S0 + 2m

S0 + 2m(n + 1)
P(xn).

Clearly Rn ∈ Fn and similarly to the end of the proof of Lemma 2.6 one can show that

‖Rn‖ � c/n for some constant c = c(N, S0, m), which implies that

∞∑
n=1

n−1‖Rn‖ < ∞ a.s.

Finally, to check that ‖ξn‖1 � 2N, note that

|xin+1 − xin| =

∣∣∣∣Xi
n+1 − Xi

n − 2mxin
Sn+1

∣∣∣∣ � 2m

2m(n + 1)
=

1

n + 1
,

and then use (3.4).

As in the one-dimensional case, intuitively, trajectories of a stochastic approximation

process {Zn}n�0 should approximate the trajectories {Z(t)}t�0 of the corresponding ODE

dZ/dt = F (Z). Moreover, since {Zn}n�0 is a stochastic system, we expect that stable

trajectories of the ODE should appear but unstable trajectories should not.

The main concept in formalizing this intuition is that of an asymptotic pseudotrajectory,

introduced by Benäım and Hirsch [9]. We omit the precise definition, and refer to

Benäım’s lecture notes on the topic for more details [7] (see also [24, Section 2.5] for a

concise summary). There are many results that give sufficient conditions for a stochastic

approximation process to be an asymptotic pseudotrajectory of the corresponding ODE.

In particular, [7, Proposition 4.4 and Remark 4.5] (see also [24, Theorem 2.13]), together

with Lemma 3.4 and the fact that P is Lipschitz, imply the following.

Corollary 3.5. Let {x(t)}t�0 linearly interpolate {xn}n�0 at non-integral times. Then it is

a.s. an asymptotic pseudotrajectory for the flow induced by the vector field P via the ODE

dy/dt = P(y).

There are further general results about asymptotic pseudotrajectories that apply to the

stochastic approximation process {xn}n�0, for example, about convergence to attractors

and non-convergence to linearly unstable equilibria. However, we omit these, as we prefer

to emphasize the main message of Corollary 3.5. The main point is that in order to

understand the stochastic approximation process {xn}n�0, we need to understand the

vector field P , and the corresponding ODE

dy

dt
= P(y).

Unfortunately, understanding the behaviour of such nonlinear ODEs is a notoriously

difficult subject (see e.g. the book by Hirsch, Smale and Devaney [15]). The most successful
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tool in this area is Lyapunov theory (see e.g. the recent paper [8]), and this can indeed be

applied to our problem for special values of the parameters; however, it seems difficult to

apply this theory to the vector field P for generic values of the parameters {piu}u,i.

For instance, if P is a gradient, that is, P = −∇V for some V : R
N → R, then

Corollary 3.5 and general results about asymptotic pseudotrajectories (see [7]) imply

that xn converges almost surely and the limit is a point in the zero set ZP , which, by

Lemma 3.3, implies that Conjecture 3.2 holds. An example of when P is a gradient is

when the probability of the new node adopting type i depends only on the number of

type i connections, that is, piu = φ(ui) for some function φ which does not depend on i.

This implies that φ must be of the form

φ(z) = α
1

N
+ (1 − α)

z

m

for some 0 � α � 1,3 which corresponds to a mixture of the linear model and a uniformly

random choice. In this case

P(y) =
α

2

(
1

N
1 − y

)
,

where 1 ∈ R
N is the vector with all entries equal to 1, and thus when α > 0 then an

converges a.s. to 1
N

1.

However, for generic parameter values P will not be a gradient. To see this, note that

P being a gradient implies that

∂(P(y))i

∂yj
=

∂(P(y))j

∂yi
(3.5)

for every i �= j. Without any restrictions, there are (N − 1)
(
m+N−1
N−1

)
free parameters in P .

The gradient condition (3.5) imposes an additional
(
N
2

)
constraints, which will not be

satisfied for generic parameter values.

4. Open problems and future directions

Our paper leaves open several interesting problems. Two immediate open questions

concerning the model are as follows.

3 To see this, first note that there are m + 1 free parameters when constructing such a function: φ(0),

φ(1), . . . , φ(m). These parameters also satisfy constraints, since the probabilities have to sum to 1:
∑N

i=1 p
i
u = 1

for every vector of types u. In particular, the following m equations are linearly independent:

(N − 3)φ(0) + φ(0) + φ(i) + φ(m − i) = 1, for i = 0, 1, . . . , �m/2�,
(N − 3)φ(0) + φ(1) + φ(i) + φ(m − i − 1) = 1, for i = 1, 2, . . . , �(m − 1)/2�.

Consequently, there can be at most two linearly independent solutions to these equations. The constant

function φ(z) = 1/N and the linear function φ(z) = z/m are solutions, which means that any solution is a

linear combination of these. The restriction of α to be in [0, 1] follows from the constraint that the probabilities

be non-negative.

https://doi.org/10.1017/S0963548315000383 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000383


820 T. Antunović, E. Mossel and M. Z. Rácz

Limiting distribution in the linear model for two types. Our Theorem 1.1 gives us inform-

ation about the limiting behaviour of {an}n�0, but it does not identify the distribution of

a := limn→∞ an.

For m = 1 the process {xn}n�0 corresponds to a Pólya urn where whenever one draws

a ball, one puts back two extra balls of the same colour. This is because when a new

node joins the graph, its colour automatically becomes the colour of its initial neighbour.

Thus the distribution of x – and by Lemma 2.1 the distribution of a as well – is the Beta

distribution with parameters X0/2 and Y0/2.

However, for m > 1 we do not know what the limiting distribution is. Note that

simulations show that the limiting distribution can be bimodal; see Figure 2(b), for

example.

Understanding the vector field P . As discussed in Section 3, in order to understand the

behaviour of the general nonlinear model in the case of multiple types – and in order to

prove or disprove Conjecture 3.2 – a good understanding of the vector field P and the

corresponding ODE dy/dt = P(y) is needed. We leave this as our second open problem.

A key property of the model is its simplicity. However, this also means that certain

aspects of real-world networks and processes influencing product adoption are simplified

or not considered. It would be interesting to understand the following possible extensions

of the model, and, in particular, whether anything can be said analytically in these

extensions.

Changing preferences. In the model, once a node receives a type, that type is then fixed

and cannot change over time. A possible extension of the model is to allow the type

of a node to change over time. This can model changing preferences of individuals, for

example, somebody moving from one mobile phone provider to another.

Allowing multiple types for a single individual. In the model a node can only have a single

type. This is reasonable in many situations (e.g., an individual typically has only one

mobile phone provider), but modelling other situations might require allowing nodes to

simultaneously have multiple types.

Other network evolution models. The preferential attachment model is a reasonable

approximation of some real-world networks, and it has the advantageous property of

being analytically tractable. How does the model behave under other network evolution

models? Can similar results be shown analytically/experimentally? Are the results robust

to small changes in the network evolution model?

In particular, the affine preferential attachment model is discussed at the end of

Section 1.2. This model is more involved, because when c �= 0, then {Xn}n�0 is not

a Markov process, so one has to understand the joint evolution of {(An,Xn)}n�0. A

calculation shows that {(an, xn)}n�0 is a stochastic approximation process with vector field

F (a, x) =

(
2m

2m + c
(x − a) + 2P

(
2m

2m + c
x +

c

2m + c
a

)
,

c

2m + c
(a − x) + P

(
2m

2m + c
x +

c

2m + c
a

))
.
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For c � 0, the zero set of F is exactly {(a, x) : a = x, P (x) = 0}, and so the same results

as in Section 1.2 apply. For c ∈ (−1, 0) the zero set of F could be larger; we leave the

analysis of this as an exercise to the reader.

The case of uniform attachment is even simpler than preferential attachment, since

{An}n�0 is a Markov process, and it is unnecessary to consider the sum-of-degrees process

{Xn}n�0. The same results as in Section 1.2 apply.

We leave the study of further network evolution models for future work.

Other type adoption mechanisms. The model incorporates a fairly general type adoption

mechanism, but various modifications would be interesting to explore. For instance, in

real life choices are often made based on the opinions of specific friends, not just based

on aggregate information of one’s friends.

Marketing. In essence, the model describes word-of-mouth recommendations, and does

not consider marketing efforts by the competing companies, such as advertising. How

does incorporating marketing affect the results?

In conclusion, through a simple model we have coupled network evolution and type

adoption, leading to a possible explanation of coexistence in preferential attachment

networks. Exploring various modifications and extensions of this model, such as those

mentioned above, will be crucial in determining the robustness of this phenomenon, and

will help elucidate our understanding of these processes.
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