
J. Appl. Probab. 60, 629–641 (2023)
doi:10.1017/jpr.2022.81

TREE TRACE RECONSTRUCTION USING SUBTRACES

TATIANA BRAILOVSKAYA ,∗ AND

MIKLÓS Z. RÁCZ,∗∗ Princeton University

Abstract

Tree trace reconstruction aims to learn the binary node labels of a tree, given indepen-
dent samples of the tree passed through an appropriately defined deletion channel. In
recent work, Davies, Rácz, and Rashtchian [10] used combinatorial methods to show
that exp (O(k logk n)) samples suffice to reconstruct a complete k-ary tree with n nodes
with high probability. We provide an alternative proof of this result, which allows us
to generalize it to a broader class of tree topologies and deletion models. In our proofs
we introduce the notion of a subtrace, which enables us to connect with and generalize
recent mean-based complex analytic algorithms for string trace reconstruction.

Keywords: Trace reconstruction; statistical error correction; tree graphs

2020 Mathematics Subject Classification: Primary 60C05
Secondary 94D99

1. Introduction

Trace reconstruction is a fundamental statistical reconstruction problem that has received
much attention lately. Here the goal is to infer an unknown binary string of length n, given inde-
pendent copies of the string passed through a deletion channel. The deletion channel deletes
each bit in the string independently with probability q and then concatenates the surviving bits
into a trace. The goal is to learn the original string with high probability using as few traces as
possible.

The trace reconstruction problem was introduced two decades ago [3, 20], and despite much
work over the past two decades [6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 24], understanding the sam-
ple complexity of trace reconstruction remains wide open. Specifically, the best known upper
bound is due to Chase [6] who showed that exp

(
O

(
n1/5 log5 n

))
samples suffice; this work

builds upon previous breakthroughs by De, O’Donnell, and Servedio [12, 13] and Nazarov and
Peres [24], who simultaneously obtained an upper bound of exp

(
O

(
n1/3

))
. In contrast, the best

known lower bound is �
(
n3/2/ log7 n

)
(see [7] and [16]). Considering average-case strings,

as opposed to worst-case ones, reduces the sample complexity considerably, but the large gap
remains: the current best known upper and lower bounds are exp

(
O

(
log1/3 n

))
(see [17]) and

�
(
log5/2 n/(log log n)7

)
(see [7]), respectively. As we can see, the bounds are exponentially

far apart for both the worst-case and average-case problems.

Received 29 September 2021; revision received 6 July 2022.
∗ Postal address: Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA.
Email address: tatianab@princeton.edu
∗∗ Postal address: Department of Operations Research and Financial Engineering, Princeton University, Princeton,
NJ, USA. Email address: mracz@princeton.edu

© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust.

629

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81
https://orcid.org/0000-0001-7514-5106
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2022.81&domain=pdf
https://doi.org/10.1017/jpr.2022.81

630 T. BRAILOVSKAYA AND M. Z. RÁCZ

Given the difficulty of the trace reconstruction problem, several variants have been intro-
duced, in part to study the strengths and weaknesses of various techniques. These include
generalizing trace reconstruction from strings to trees [10] and matrices [19], coded trace
reconstruction [5, 9], population recovery [1, 2, 22], and more [8, 11, 23].

In this work we consider tree trace reconstruction, introduced recently by Davies, Rácz,
and Rashtchian [10]. In this problem we aim to learn the binary node labels of a tree, given
independent samples of the tree passed through an appropriately defined deletion channel.
The additional tree structure makes reconstruction easier; indeed, in several settings Davies,
Rácz, and Rashtchian [10] show that the sample complexity is polynomial in the number of
bits in the worst case. Furthermore, Maranzatto [21] showed that strings are the hardest trees
to reconstruct; that is, the sample complexity of reconstructing an arbitrary labeled tree with
n nodes is no more than the sample complexity of reconstructing an arbitrary labeled n-bit
string.

As demonstrated in [10], tree trace reconstruction provides a natural testbed for studying the
interplay between combinatorial and complex analytic techniques that have been used to tackle
the string variant. Our work continues in this spirit. In particular, Davies, Rácz, and Rashtchian
[10] used combinatorial methods to show that exp (O(k logk n)) samples suffice to reconstruct
complete k-ary trees with n nodes, and here we provide an alternative proof using complex
analytic techniques. This alternative proof also allows us to generalize the result to a broader
class of tree topologies and deletion models. Before stating our results we first introduce the
tree trace reconstruction problem more precisely.

Let X be a rooted tree with unknown binary labels (i.e. {0, 1}) on its n non-root nodes. We
assume that X has an ordering of its nodes, and the children of a given node have a left-to-right
ordering. The goal of tree trace reconstruction is to learn the labels of X with high probability,
using as few traces as possible, knowing only the deletion model, the deletion probability q < 1,
and the tree structure of X. Throughout this paper we write ‘with high probability’ (w.h.p.) to
mean with probability tending to 1 as n → ∞.

While for strings there is a canonical model of the deletion channel, there is no such canon-
ical model for trees. Previous work in [10] considered two natural extensions of the string
deletion channel to trees: the tree edit distance (TED) deletion model and the left-propagation
(LP) deletion model; see [10] for details. Here we focus on the TED model, while also intro-
ducing a new deletion model, termed all-or-nothing (AON), which is more ‘destructive’ than
the other models. In both models the root never gets deleted.

Tree edit distance (TED) deletion model. Each non-root node is deleted independently with
probability q and deletions are associative. When a node v gets deleted, all of the children of
v now become children of the parent of v. Equivalently, contract the edge between v and its
parent, retaining the label of the parent. The children of v take the place of v in the left-to-right
order; in other words, the original siblings of v that are to the left of v and survive are now to
the left of the children of v, and the same holds to the right of v.

All-or-nothing (AON) deletion model. Each non-root node is marked independently with
probability q. If a node v is marked, then the whole subtree rooted at v is deleted. In other
words, a node is deleted if and only if it is marked or it has an ancestor which is marked.

Figure 1 illustrates these two deletion models. We refer to [10] for motivation and further
remarks on the TED deletion model. While the AON deletion model is significantly more
destructive than the TED deletion model, an advantage of the tools we develop in this work is

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

Tree trace reconstruction using subtraces 631

(a) (b) (c)

FIGURE 1. Actions of deletion models on a sample tree. (a) Original tree, with bold nodes to be deleted.
(b) Resulting trace in the TED model, and (c) the AON model.

that we are able to obtain similar results for arbitrary tree topologies under the AON deletion
model.

Before we state our results, we recall a result of Davies, Rácz, and Rashtchian [10,
Theorem 4].

Theorem 1.1. ([10].) In the TED model, there exists a finite constant C depending only on q
such that exp (Ck logk n) traces suffice to reconstruct a complete k-ary tree on n nodes with
high probability (here k ≥ 2).

In particular, note that the sample complexity is polynomial in n whenever k is a con-
stant. Our first result is an alternative proof of the same result, under some mild additional
assumptions, as stated below in Theorem 1.2.

Theorem 1.2. Fix c ∈Z
+ and let q < c/(c + 1). There exists a finite constant C, depending

only on c and q, such that for any k > c the following holds: in the TED model, exp (Ck logk n)
traces suffice to reconstruct a complete k-ary tree on n nodes with high probability.

The additional assumptions compared to Theorem 1.1 are indeed mild. For instance, with
c = 1 in the theorem above, Theorem 1.1 is recovered for q < 1/2. Theorem 1.2 also allows q
to be arbitrarily close to 1, provided that k is at least a large enough constant.

In [10], the authors use combinatorial techniques to prove Theorem 1.1. Our proof of
Theorem 1.2 uses a mean-based complex analytic approach, similar to [12], [13], [19], and
[24]. In fact we can prove a slightly more general statement than Theorem 1.2 using our
technique.

Theorem 1.3. Let X be a rooted tree on n nodes with binary labels, with nodes on level � all
having the same number of children k�. Let kmax := max� k� and kmin := min� k�, where the
minimum goes over all levels except the last one (containing leaf nodes). If q < c/(c + 1) and
kmin > c for some c ∈Z

+, then there exists a finite constant C, depending only on c and q, such
that exp (Ckmax logkmin

n) traces suffice to reconstruct X with high probability.

Furthermore, with some slight modifications, our proof of Theorem 1.2 also provides a
sample complexity bound for reconstructing arbitrary tree topologies in the AON deletion
model.

Theorem 1.4. Let X be a rooted tree on n nodes with binary labels, let kmax denote the max-
imum number of children a node has in X, and let d be the depth of X. In the AON model,
there exists a finite constant C depending only on q such that exp (Ckmaxd) traces suffice to
reconstruct X with high probability.

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

632 T. BRAILOVSKAYA AND M. Z. RÁCZ

The key idea in the above proofs is the notion of a subtrace, which is the subgraph of a trace
that consists only of root-to-leaf paths of length d, where d is the depth of the underlying tree.
In the proofs of Theorems 1.2 and 1.3 we essentially only use the information contained in
these subtraces and ignore the rest of the trace. This trick is key to making the setup amenable
to the mean-based complex analytic techniques.

The rest of the paper follows the following outline. We start with some preliminaries in
Section 2, where we state basic tree definitions and define the notion of a subtrace more pre-
cisely. In Section 3 we present our proof of Theorem 1.3. In Section 4 we extend the methods
of Section 3 to another deletion model, proving Theorem 1.4. We conclude in Section 5.

2. Preliminaries

In what follows, X denotes an underlying rooted tree of known topology alongx with binary
labels associated with the n non-root nodes of the tree.

Basic tree terminology. A tree is an acyclic graph. A rooted tree has a special node that is
designated as the root. A leaf is a node of degree 1. We say that a node v is at level � if the
graph distance between v and the root is �. We say that node v is at height h if the largest graph
distance from v to a leaf is h. Depth is the largest distance from the root to a leaf. We say that
node u is a child of node v if there is an edge between u and v and v is closer to the root than
u in graph distance. Similarly, we also call v the parent of u. More generally, v is an ancestor
of u if there exists a path v = x0, . . ., xn = u such that xi is closer to the root than xi+1 for
every i ∈ {0, 1, . . . , n − 1}. A complete k-ary tree is a tree in which every non-leaf node has k
children.

Subtrace augmentation. Above we defined the subtrace Z as the subgraph of the trace Y
containing all root-to-leaf paths of length d, where d is the depth of X. In what follows, it will
be helpful to slightly modify the definition of the subtrace by augmenting Z to Z′ such that Z′
is a complete k-ary tree that contains Z as a subgraph. Given Z, we construct Z′ recursively as
follows. We begin by setting Z′ := Z. If the root of Z′ currently has fewer than k children, then
add more child nodes to the root to the right of the existing children and label them 0. Now,
consider the leftmost node in level 1 of Z′. If it has fewer than k children, add new children to
the right of the existing children of this node and label them 0. Then repeat the same procedure
for the second leftmost node in level 1. Continue this procedure left to right for each level,
moving from top to bottom of the tree. See Figure 2 for an illustration of this process. In
Section 3, when we mention the subtrace of X we mean the augmented subtrace, constructed
as described here in the case of k-ary trees. We will slightly modify the notion of an augmented
subtrace for the other tree topologies we will be considering.

3. Reconstruction under the TED model

In this section we prove Theorem 1.3. Then Theorem 1.2 will follow as an immediate corol-
lary with k� = k. The proof takes inspiration from [12], [13], [19], and [24]. We begin by
computing, for every node in the original tree, its probability of survival in a subtrace. We then
derive a multivariate complex generating function for every level �, with random coefficients
corresponding to the labels of nodes in the subtrace. Finally, we show how we can ‘average’
the subtraces to determine the correct labeling for each level of the original tree with high
probability.

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

Tree trace reconstruction using subtraces 633

(a) (b)

(c) (d)

FIGURE 2. Construction of an augmented subtrace. (a) Original tree, with bold nodes to be deleted.
(b) Resulting trace under the TED deletion model. (c) Subtrace. (d) Augmented subtrace, with bold

nodes corresponding to the padding 0s.

Before we proceed with the proof, we must clarify the notion of a subtrace. In Section 2
we described the notion of an augmented subtrace for a k-ary tree. More generally, for trees in
the setting of Theorem 1.3, we define an augmented subtrace in a similar way; the key point
is that the underlying tree structure of the augmented subtrace is the same as the underlying
tree structure of X. That is, we start with the root of the subtrace Z, and if it has less than k0
children, we add nodes with 0 labels to the right of its existing children, until the root has k0
children in total. We then move on to the leftmost node on level 1 and add new children with
label 0 to the right of its existing children, until it has k1 children. We continue in this fashion
from left to right on each level, ensuring that each node on level � has k� children, moving
from top to bottom of the tree.

3.1. Computing the probability of node survival in a subtrace

Let d denote the depth of the original tree X. Let Y denote a trace of X and let Z denote the
corresponding subtrace obtained from Y . Observe that a node v at level � of X survives in the
subtrace Z if and only if a root-to-leaf path that includes v survives in the trace Y . Furthermore,
there exists exactly one path from the root to v, which survives in Y with probability (1 − q)�−1

(since each of the � − 1 non-root ancestors of v has to survive independently). Let pd−� denote
the probability that no v-to-leaf path survives in Y . Thus

P(v survives in Z) = (1 − q)�−1(1 − pd−�).

Thus we can see that it suffices to compute ph for h ∈ {0, 1, . . . , d − 1} in order to compute
the probability of survival of v in a subtrace. The rest of this subsection is thus dedicated
to understanding {ph}d−1

h=0. We will not find an explicit expression for ph, but rather derive a
recurrence relation for ph, which will prove to be good enough for us.

Let v denote a vertex at height h, which is the root of the subtree under consideration. There
are two events that contribute to ph. Either v gets deleted (this happens with probability q) or all

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

634 T. BRAILOVSKAYA AND M. Z. RÁCZ

of the kd−h (recall that vertices on level � each have k� children) subtrees rooted at the children
of v do not have a surviving root-to-leaf path in the subtrace

(
this happens with probability

pkd−h
h−1

)
. Thus we have the following recurrence relation: for every h ≥ 0 we have

ph+1 = q + (1 − q)pkd−h−1
h ; (3.1)

furthermore, the initial condition satisfies p0 = q. This recursion allows us to compute {ph}d−1
h=0.

We now prove the following statement about this recursion, which will be useful later on.

Lemma 3.1. Suppose that 0 < q < c/(c + 1) and kmin > c for some c ∈Z
+. There exists p′ < 1,

depending only on c and q, such that pi ≤ p′ < 1 for every i ≥ 0.

Proof. The function f (p) := 1 + p + · · · + pc is continuous and strictly increasing on
[0, 1] with f (0) = 1 and f (1) = c + 1. The assumption q ∈ (0, c/(c + 1)) implies that 1/(1 −
q) ∈ (1, c + 1), so there exists a unique p′ ∈ (0, 1) such that f (p′) = 1/(1 − q). By construction
p′ is a function of c and q. We will show by induction that pi ≤ p′ for every i ≥ 0.

First, observe that f (p) ≤ ∑
m≥0 pm = 1/(1 − p). Thus 1/(1 − p′) ≥ 1/(1 − q) and so q ≤ p′.

Since p0 = q, this proves the base case of the induction.
For the induction step, first note that if p ∈ (0, 1), then f (p) = (

1 − pc+1
)
/(1 − p). Therefore

the equation f (p′) = 1/(1 − q) implies that (1 − q)(p′)c+1 = p′ − q. So if pi ≤ p′, then (3.1)
implies that pi+1 = q + (1 − q)pkd−i−1

i ≤ q + (1 − q)(p′)c+1 = q + (p′ − q) = p′, where we also
used the assumption kmin ≥ c + 1 in the inequality. �

We can interpret the result of Lemma 3.1 as follows. If we restrict that kmin > c and q <

c/(c + 1), then there exists at least one surviving root-to-leaf path in the trace with positive
probability even as n → ∞. Existence of root-to-leaf paths in the trace is essential for the
subtrace to carry any meaningful information, which is why this lemma will become important
later in the proof.

3.2. Generating function derivation

We begin by introducing some additional notation. Let b�,i denote the label of the node
located at level � in position i from the left in the original tree X; we start the indexing of
i from 0, so b�,0 is the label of the leftmost vertex on level �. Similarly, let a�,i denote the
label of the node located at level � in position i from the left in the subtrace Z. Observe that
for i ∈ {0, 1, . . . , k0 . . . k�−1 − 1} we can write i = i�−1k0 . . . k�−2 + i�−2k0 . . . k�−3 + · · · + i0
with i� ∈ {0, . . . , k� − 1}, that is, if, say, all k� = k, we have that i�−1i�−2 . . . i0 is the base k
representation of i. To abbreviate notation, we will write a�,i = a�,i�−1k0...k�−1+i�−2k0...k�−2+···+i0
as simply a�,i�−1...i0 .

We introduce, for every level �, a multivariate complex generating function whose coeffi-
cients are the labels of the nodes at level � of a subtrace Z. Specifically, we introduce complex
variables w0, . . . , w�−1 for each position in the representation of i, and define

A�(w) :=
k0−1∑
i0=0

. . .

k�−1−1∑
i�−1=0

a�,i�−1...i0 wi�−1
�−1 . . . wi0

0 . (3.2)

We are now ready to state the main result of this subsection, which computes the expectation
of this generating function.

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

Tree trace reconstruction using subtraces 635

Lemma 3.2. For every � ∈ {1, . . . , d}, we have

E[A�(w)] = (1 − q)�−1(1 − pd−�

) k0−1∑
i0=0

. . .

k�−1−1∑
i�−1=0

b�,i�−1...i0

�−1∏
m=0

((
1 − pd−�+m

)
wm + pd−�+m

)im .

(3.3)

This lemma is useful because the right-hand side of (3.3) contains the labels of the nodes
on level � of X, while the left-hand side can be estimated by averaging over subtraces.

Proof of Lemma 3.2. By linearity of expectation we have

E[A�(w)] =
k0−1∑
i0=0

. . .

k�−1−1∑
i�−1=0

E
[
a�,i�−1...i0

]
wi�−1

�−1 . . . wi0
0 , (3.4)

so our goal is to compute E[a�,i�−1...i0]. For node i = i�−1 . . . i0 on level �, we may interpret
each digit im in the representation of i as follows: consider node i′s ancestor on level � − m; the
horizontal position of this node amongst its siblings is im. Thus, if the original bit b�,j survives
in the subtrace, it can only end up in position i = i�−1i�−2 . . . i0 on level � satisfying im ≤ jm for
every m. If the mth digit of the location of b�,j in the subtrace is i�−m, then exactly j�−m − i�−m

siblings left of the ancestor of b�,j on level � − m must have been deleted and the ancestor of
b�,j on level � − m must have survived in the subtrace. Thus the probability that the bit b�,j of
the original tree is sent to a�,i in the subtrace is given by

P
(
b�,j�−1...j0 → a�,i�−1...i0

) =
(

j0
i0

)
pj0−i0

d−�

(
1 − pd−�

)i0+1 ×
(

j1
i1

)
pj1−i1

d−�+1

(
1 − pd−�+1

)i1 (1 − q)

× · · · ×
(

j�−1

i�−1

)
pj�−1−i�−1

d−1 (1 − pd−1)i�−1 (1 − q)

= (1 − q)�−1(1 − pd−�

) �−1∏
m=0

(
jm
im

)
pjm−im

d−�+m

(
1 − pd−�+m

)im .

Summing over all j satisfying im ≤ jm for every m, and plugging into (3.4), we obtain

E[A�(w)] = (1 − q)�−1(1 − pd−�

)
×

k0−1∑
i0=0

. . .

k�−1−1∑
i�−1=0

k0−1∑
j0=i0

. . .

k�−1−1∑
j�−1=i�−1

b�,j�−1...j0

�−1∏
m=0

(
jm
im

)
pjm−im

d−�+m

(
1 − pd−�+m

)imwim
m .

Interchanging the order of summations and using the binomial theorem (� times), we
obtain (3.3). �

3.3. Bounding the modulus of the generating function

Here we prove a simple lower bound on the modulus of a multivariate Littlewood poly-
nomial. This bound will extend to the generating function computed above for appropriate
choices of wm. The argument presented here is inspired by the method of proof of [19,
Lemma 4]. Throughout the paper we let D denote the unit disk in the complex plane and
let ∂D denote its boundary.

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

636 T. BRAILOVSKAYA AND M. Z. RÁCZ

Lemma 3.3. Let F(z0, . . . , z�−1) be a non-zero multivariate polynomial with monomial
coefficients in {−1, 0, 1}. Then

sup
z0,...,z�−1∈∂D

|F(z0, . . . , z�−1)| ≥ 1.

Proof. We define a sequence of polynomials {Fi}�−1
i=0 inductively as follows, where Fi is

a function of the variables zi, . . . , z�−1. First, let t0 be the smallest power of z0 in a mono-
mial of F and let F0(z0, . . . , z�−1) := z−t0

0 F(z0, . . . , z�−1). By construction, F0 has at least
one monomial where z0 does not appear. For i ∈ {1, . . . , � − 1}, given Fi−1 we define Fi as
follows. Let ti be the smallest power of zi in a monomial of Fi−1(0, zi, . . . , z�−1) and let
Fi(zi, . . . , z�−1) := z−ti

i Fi−1(0, zi, . . . , z�−1). Observe that this construction guarantees, for
every i, that the polynomial Fi(zi, . . . , z�−1) has at least one monomial where zi does not
appear. In particular, the univariate polynomial F�−1(z�−1) has a non-zero constant term. Since
the coefficients of the polynomial are in {−1, 0, 1}, this means that the constant term has
absolute value 1, i.e. |F�−1(0)| = 1.

We will now use induction to prove that for every i ≤ � − 1, we have

sup
z�−1−i,...,z�−1∈∂D

|F�−1−i(z�−1−i, . . . , z�−1)| ≥ 1. (3.5)

We begin with i = 0. By the maximum modulus principle, supz∈∂D |F�−1(z)| ≥ |F�−1(0)| =
1, so we move on to the inductive step. Suppose the claim holds for some i. Now let(
z∗
�−1−i, . . . , z∗

�−1

)
denote the maximizer of |F�−1−i(z�−1−i, . . . , z�−1)| with z∗

m ∈ ∂D. Again,
by the maximum modulus principle and the inductive hypothesis,∣∣F�−i

(
0, z∗

�−1−i . . . , z∗
�−1

)∣∣ = ∣∣(z∗
�−1−i

)t�−1−i
∣∣∣∣F�−1−i

(
z∗
�−1−i, . . . , z∗

�−1

)∣∣ ≥ 1.

By another application of maximum modulus principle and the inequality of the previous
display, it follows that

sup
z�−i,...,z�−1∈∂D

|F�−i(z�−i, . . . , z�−1)| ≥ ∣∣F�−i
(
0, z∗

�−1−i, . . . , z∗
�−1

)∣∣ ≥ 1.

Thus (3.5) holds and the desired conclusion follows with i = � − 1. �

3.4. Finishing the proof of Theorem 1.3

Proof of Theorem 1.3. Let X′ and X′′ be two trees on n non-root nodes with different binary
node labels such that every vertex on level � has k� children. Our first goal is to distinguish
between X′ and X′′ using subtraces. At the end of the proof we will then explain how to estimate
the original tree X using subtraces.

Since X′ and X′′ have different labels, there exists at least one level of the tree where the
node labels differ. Call the minimal such level �∗ = �∗(X′, X′′); we will use this level of the
subtraces to distinguish between X′ and X′′. Let{

b′
�∗,i : i ∈ {

0, 1, . . . , k0 . . . k�∗−1 − 1
}}

and
{
b′′
�∗,i : i ∈ {

0, 1, . . . , k0 . . . k�∗−1 − 1
}}

denote the labels on level �∗ of X′ and X′′, respectively. Furthermore, for every i define b�∗,i :=
b′
�∗,i − b′′

�∗,i. By construction, b�∗,i ∈ {−1, 0, 1} for every i, and there exists i such that b�∗,i 	= 0.
Let Z′ and Z′′ be subtraces obtained from X′ and X′′, respectively, and let{

Z′
�∗,i : i ∈ {

0, 1, . . . , k0 . . . k�∗−1 − 1
}}

and
{
Z′′

�∗,i : i ∈ {
0, 1, . . . , k0 . . . k�∗−1 − 1

}}

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

Tree trace reconstruction using subtraces 637

denote the labels on level �∗ of Z′ and Z′′, respectively. By Lemma 3.2 we have

E

[k0−1∑
t0=0

. . .

k�∗−1−1∑
t�∗−1=0

Z′
�∗,t�∗−1...t0

�∗−1∏
m=0

wtm
m

]
−E

[k0−1∑
t0=0

. . .

k�∗−1−1∑
t�∗−1=0

Z′′
�∗,t�∗−1...t0

t�∗−1∏
m=0

wtm
m

]

= (1 − q)�∗−1(1 − pd−�∗)
k0−1∑
t0=0

. . .

k�∗−1−1∑
t�∗−1=0

b�∗,t�∗−1...t0

�∗−1∏
m=0

((
1 − pd−�∗+m

)
wm + pd−�∗+m

)tm .

Now define the multivariate polynomial B(z) in the variables z = (z0, . . . , z�∗−1) as follows:

B(z) :=
k0−1∑
t0=0

. . .

k�∗−1−1∑
t�∗−1=0

b�∗,t�∗−1...t0

�∗−1∏
m=0

ztm
m .

Lemma 3.3 implies that there exists z∗ = (
z∗

0, . . . , z∗
�∗−1

)
such that z∗

m ∈ ∂D for every m ∈
{0, . . . , �∗ − 1} and

|B(z∗)| ≥ 1.

For m ∈ {0, . . . , �∗ − 1}, let

w∗
m := z∗

m − pd−�∗+m

1 − pd−�∗+m
.

Note that the polynomial B is a function of X′ and X′′, and thus so is z∗ and also w∗ =(
w∗

0, . . . , w∗
�∗−1

)
. Putting together the four previous displays and using the triangle inequality,

we obtain

k0−1∑
t0=0

. . .

k�∗−1−1∑
t�∗−1=0

∣∣E[
Z′

�∗,t�∗−1...t0

] −E
[
Z′′

�∗,t�∗−1...t0

]∣∣ �∗−1∏
m=0

|w∗
m|tm ≥ (1 − q)�∗−1(1 − pd−�∗

)
.

(3.6)
Next we estimate |w∗

m|. By the definition of w∗
m and the triangle inequality, we have

|w∗
m| = |z∗

m − pd−�∗+m|
1 − pd−�∗+m

≤ |z∗
m| + pd−�∗+m

1 − pd−�∗+m
≤ 2

1 − p′ , (3.7)

where in the last inequality we used that |z∗
m| = 1 and that pd−�∗+m ≤ p′ < 1 (from Lemma 3.1).

Note that p′ is a constant that depends only on c and q (recall that c is an input to the theorem).
The bound in (3.7) implies that

�∗−1∏
m=0

|w∗
m|tm ≤

(
2

1 − p′

)kmax�∗
.

Plugging this back into (3.6) (and using that pd−�∗ ≤ p′), we get

k−1∑
t0=0

. . .

k−1∑
t�∗−1=0

∣∣E[
Z′

�∗,t�∗−1...t0

] −E
[
Z′′

�∗,t�∗−1...t0

]∣∣ ≥ (1 − q)�∗−1(1 − p′)kmax�∗+1(1/2)kmax�∗ .

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

638 T. BRAILOVSKAYA AND M. Z. RÁCZ

Thus, by the pigeonhole principle, there exists i∗ ∈ {
0, 1, . . . , k0 . . . k�∗−1 − 1

}
such that

∣∣E[
Z′

�∗,i∗
] −E

[
Z′′

�∗,i∗
]∣∣ ≥ (1 − q)�∗−1(1 − p′)kmax�∗+1(1/2)kmax�∗

k�∗
max

≥ exp (−Ckmax�∗) (3.8)

≥ exp
(−Ckmax logkmin

n
)
,

where the second inequality holds for a large enough constant C that depends only on c and
q, while the third inequality is because the depth of the tree is ≤ logkmin

n. Note that i∗ is a
function of X′ and X′′.

Now suppose that we sample T traces of X from the TED deletion channel and let
Z1, . . . , ZT denote the corresponding subtraces. Let X′ and X′′ be two complete labeled trees
of appropriate topologies with different labels, and recall the definitions of �∗ = �∗(X′, X′′) and
i∗ = i∗(X′, X′′) from above. We say that X′ beats X′′ (with respect to these samples) if∣∣∣∣∣ 1

T

T∑
t=1

Zt
�∗,i∗ −E

[
Z′

�∗,i∗
]∣∣∣∣∣ <

∣∣∣∣∣ 1

T

T∑
t=1

Zt
�∗,i∗ −E

[
Z′′

�∗,i∗
]∣∣∣∣∣.

We are now ready to define our estimate X̂ of the labels of the original tree. If there exists a
tree X′ that beats every other tree of the same topology (with respect to these samples), then
we let X̂ := X′. Otherwise, define X̂ arbitrarily.

Finally, we show that this estimate is correct with high probability. Let

η := exp
(−Ckmax logkmin

n
)
.

By a union bound and a Chernoff bound (using (3.8)), the probability that the estimate is
incorrect is bounded by

P(X̂ 	= X) ≤
∑

X′ : X′ 	=X

P(X′ beats X)

≤ 2n exp
(−Tη2/2

)
= 2n exp

(
−T

2
exp

(−2Ckmax logkmin
n
))

.

Choosing T = exp
(
3Ckmax logkmin

n
)
, the right-hand side of the display above tends to 0. �

4. Reconstruction under the AON model

The method of proof shown in the previous section naturally lends itself to the results of
Theorem 1.4 for the AON deletion model. The proof is almost entirely identical to the one
presented above, so we will only highlight the new ideas below and leave the details to the
reader.

We begin by first proving Theorem 1.4 for complete k-ary trees. We will then generalize to
arbitrary tree topologies. Importantly, in the AON model we will work directly with the tree
traces, as opposed to the subtraces as we did previously. As described in Section 2, we augment
each trace Y with additional nodes with 0 labels to form a k-ary tree. In what follows, when we
say ‘trace’ we mean this augmented trace.

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

Tree trace reconstruction using subtraces 639

Theorem 4.1. In the AON model, there exists a finite constant C depending only on q such
that exp (Ck logk n) traces suffice to reconstruct a complete k-ary tree on n nodes w.h.p. (here
k ≥ 2).

Proof. We may define A�(w), the generating function for level �, exactly as in (3.2). The
following lemma is the analog of Lemma 3.2; we omit its proof, since it is analogous to that of
Lemma 3.2. �

Lemma 4.1. For every � ∈ {1, . . . , d}, we have

E[A�(w)] = (1 − q)�
k−1∑
t0=0

. . .

k−1∑
t�−1=0

b�,t�−1...t0

�−1∏
m=0

((1 − q)wm + q)tm .

With this lemma in place, the remainder of the proof is almost identical to Section 3.4. The
polynomial B(z) and hence also z∗ are as before. Now we define w∗

m := (
z∗

m − q
)
/(1 − q). The

right-hand side of (3.6) becomes (1 − q)�∗ . The analog of (3.7) becomes the inequality |w∗
m| ≤

2/(1 − q); moreover, wherever p′ appears in Section 3.4, it is replaced by q here. Altogether,
we find that there exists i∗ ∈ {0, 1, . . . , k�∗ − 1} such that∣∣E[

Z′
�∗,i∗

] −E
[
Z′′

�∗,i∗
]∣∣ ≥ exp (−Ck�∗) ≥ exp (−Ckd) ≥ exp (−Ck logk n),

where the first inequality holds for a large enough constant C that depends only on q. The rest
of the proof is identical to Section 3.4, showing that T = exp (3Ckd) = exp (3Ck logk n) traces
suffice. �

Proof of Theorem 1.4. Suppose that X is a rooted tree with arbitrary topology and let kmax
denote the largest number of children a node in X has. Once we sample a trace Y from X, we
form an augmented trace similarly to how we do it when X is a k-ary tree, except now we add
nodes with 0 labels to ensure that each node has kmax children. Thus each augmented trace is
a complete kmax-ary tree. Now let X′ denote a kmax-ary tree obtained by augmenting X to a
kmax-ary tree in the same fashion that we augment traces of X to a kmax-ary tree.

As before, for each node i on level � of X, there is a unique representation i = i�−1 . . . i0
where im is the position of node i′s ancestor on level � − m among its siblings. Importantly,
for every node in X, its representation in X′ is the same. This fact, together with the aug-
mentation construction, implies that E[a�,t�−1...t0] for the node a�,t�−1...t0 in Y is identical to
E[a�,t�−1...t0] for the node a�,t�−1...t0 in Y ′, which is a trace sampled from X′. Therefore we can
use the procedure presented in Theorem 4.1 to reconstruct X′ w.h.p. using T = exp (Ckmaxd)
traces sampled from X. By taking the appropriate subgraph of X′, we can thus reconstruct X
as well. �

Remark 4.1. We can observe that the distribution of the subtraces obtained from TED and
AON deletion models applied to a k-ary tree is identical. Thus Theorem 4.1 (with the addi-
tion of a mild condition on k) can also be viewed as a direct consequence of the argument
of Theorem 1.2 since the previous observation implies that the generating function (3.2)
will be identically distributed for both AON and TED models. However, viewed in this way,
Theorem 4.1 would not lend itself easily to the generalization obtained in Theorem 1.4. The
basic idea of Theorem 1.4 is that we can think of trace reconstruction of a tree with an arbitrary
topology under the AON deletion model as trace reconstruction of a kmax-ary tree produced by
padding the original tree with additional leaves with label 0. This operation does not change the

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

640 T. BRAILOVSKAYA AND M. Z. RÁCZ

augmented trace distribution of the underlying tree, but it does change the augmented subtrace
distribution, which is why this argument would fail if we tried using subtrace reconstruction.
Hence we present a more complex proof of Theorem 4.1 here, despite there being a simpler
argument available.

5. Conclusion

In this work we introduce the notion of a subtrace and demonstrate its utility in analyzing
traces produced by the deletion channel in the tree trace reconstruction problem. We provide
a novel algorithm for the reconstruction of complete k-ary trees, which matches the sample
complexity of the combinatorial approach of [10], by applying mean-based complex analytic
tools to the subtrace. This technique also allows us to reconstruct trees with more general
topologies in the TED deletion model, specifically trees where the nodes at every level have
the same number of children (with this number varying across levels).

However, many questions remain unanswered; we hope that the ideas introduced here will
help address them. In particular, how can we reconstruct, under the TED deletion model, arbi-
trary trees where all leaves are on the same level? Since the notion of a subtrace is well-defined
for such trees, we hope that the proof technique presented here can somehow be generalized to
answer this question.

In the spirit of understanding the interplay between combinatorial and complex analytic
methods, one may ask if Theorem 1.3 can also be proved using combinatorial methods (either
by extending ideas in [10] or by using new ideas). Finally, for various applications it may
be relevant to consider other deletion models. For instance, consider the AON model where
subtrees are not deleted, but rather the node labels are replaced with random labels; this is a
generalization of the TrimSuffixAndExtend model for strings (see [4]). The proof technique in
Section 4 may be extended to this model (we leave the details to the reader), and it is natural
to explore how broadly it is applicable.

Acknowledgements

We thank Sami Davies and Cyrus Rashtchian for helpful feedback and discussions. We also
thank an anonymous reviewer for their careful and helpful feedback.

Funding information

Miklós Z. Rácz is supported in part by NSF grant DMS 1811724 and by a Princeton SEAS
Innovation Award.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] BAN, F., CHEN, X., FREILICH, A., SERVEDIO, R. A. AND SINHA, S. (2019). Beyond trace reconstruction:

population recovery from the deletion channel. In 60th IEEE Annual Symposium on Foundations of Computer

Science (FOCS), pp. 745–768.

[2] BAN, F., CHEN, X., SERVEDIO, R. A. AND SINHA, S. (2019). Efficient average-case population recovery in

the presence of insertions and deletions. In Approximation, Randomization, and Combinatorial Optimization:

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.81

Tree trace reconstruction using subtraces 641

Algorithms and Techniques (APPROX/RANDOM) (LIPIcs 145), pp. 44:1–44:18. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

[3] BATU, T., KANNAN, S., KHANNA, S. AND MCGREGOR, A. (2004). Reconstructing strings from ran-
dom traces. In Proceedings of the 15th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA),
pp. 910–918.

[4] BHARDWAJ, V., PEVZNER, P. A., RASHTCHIAN, C. AND SAFONOVA, Y. (2021). Trace reconstruction
problems in computational biology. IEEE Trans. Inf. Theory 67, 3295–3314.

[5] BRAKENSIEK, J., LI, R., and SPANG, B. (2020). Coded trace reconstruction in a constant number of traces. In
Proceedings of the IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 482–493.

[6] CHASE, Z. (2020). New upper bounds for trace reconstruction. Available at arXiv:2009.03296.
[7] CHASE, Z. (2021). New lower bounds for trace reconstruction. Ann. Inst. H. Poincaré Prob. Statist., to appear.
[8] CHEN, X., DE, A., LEE, C. H., SERVEDIO, R. A. AND SINHA, S. (2021). Polynomial-time trace reconstruction

in the smoothed complexity model. In Proceedings of the 32nd Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA), pp. 54–73.

[9] CHERAGHCHI, M., GABRYS, R., MILENKOVIC, O. AND RIBEIRO, J. (2020). Coded trace reconstruction. IEEE
Trans. Inf. Theory 66, 6084–6103.

[10] DAVIES, S., RÁCZ, M. Z. AND RASHTCHIAN, C. (2021). Reconstructing trees from traces. Ann. Appl. Prob.,
to appear.

[11] DAVIES, S., RACZ, M. Z., RASHTCHIAN, C. AND SCHIFFER, B G. (2020). Approximate trace reconstruction.
Available at arXiv:2012.06713.

[12] DE, A., O’DONNELL, R. AND SERVEDIO, R. A. (2017). Optimal mean-based algorithms for trace recon-
struction. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pp. 1047–1056.

[13] DE, A., O’DONNELL, R. AND SERVEDIO, R. A. (2019). Optimal mean-based algorithms for trace reconstruc-
tion. Ann. Appl. Prob. 29, 851–874.

[14] GRIGORESCU, E., SUDAN, M. AND ZHU, M. (2020). Limitations of mean-based algorithms for trace
reconstruction at small distance. Available at arXiv:2011.13737.

[15] HARTUNG, L., HOLDEN, N. AND PERES, Y. (2018). Trace reconstruction with varying deletion probabilities.
In Proceedings of the 15th Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 54–61.

[16] HOLDEN, N. AND LYONS, R. (2020). Lower bounds for trace reconstruction. Ann. Appl. Prob. 30, 503–525.
[17] HOLDEN, N., PEMANTLE, R., PERES, Y. AND ZHAI, A. (2020). Subpolynomial trace reconstruction for

random strings and arbitrary deletion probability. Math. Statist. Learning 2, 275–309.
[18] HOLENSTEIN, T., MITZENMACHER, M., PANIGRAHY, R. AND WIEDER, U. (2008). Trace reconstruction with

constant deletion probability and related results. In Proceedings of the 19th ACM–SIAM Symposium on Discrete
Algorithms (SODA), pp. 389–398.

[19] KRISHNAMURTHY, A., MAZUMDAR, A., MCGREGOR, A. AND PAL, S. (2019). Trace reconstruc-
tion: generalized and parameterized. In 27th Annual European Symposium on Algorithms (ESA 2019),
pp. 68:1–68:25.

[20] LEVENSHTEIN, V. I. (2001). Efficient reconstruction of sequences. IEEE Trans. Inf. Theory 47, 2–22.
[21] MARANZATTO, T. J. (2020). Tree trace reconstruction: some results. Thesis, New College of Florida,

Sarasota, FL.
[22] NARAYANAN, S. (2021). Population recovery from the deletion channel: nearly matching trace reconstruction

bounds. In Proceedings of the ACM–SIAM Symposium on Discrete Algorithms (SODA).
[23] NARAYANAN, S. AND RENK, M. (2021). Circular trace reconstruction. In Proceedings of the 12th Innovations

in Theoretical Computer Science Conference (ITCS) (LIPIcs 185), pp. 18:1–18:18. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

[24] NAZAROV, F. AND PERES, Y. (2017). Trace reconstruction with exp (O(n1/3)) samples. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 1042–1046.

https://doi.org/10.1017/jpr.2022.81 Published online by Cambridge University Press

https://arxiv.org/abs/2009.03296
https://arxiv.org/abs/2012.06713
https://arxiv.org/abs/2011.13737
https://doi.org/10.1017/jpr.2022.81

	Introduction
	Preliminaries
	Reconstruction under the TED model
	Computing the probability of node survival in a subtrace
	Generating function derivation
	Bounding the modulus of the generating function
	Finishing the proof of Theorem 1.3

	Reconstruction under the AON model
	Conclusion
	Acknowledgements
	Funding information
	Competing interests
	References

