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Abstract—The spread of misinformation has increasedmarkedly
in recent years, a phenomenon which has been accelerated and
amplified by social media such as Facebook and Twitter. While
some actors spread misinformation to push a specific agenda, it has
also been widely documented that others aim to simply disrupt the
network by increasing disagreement and polarization across the
network, thereby destabilizing society. Popular social networks are
also vulnerable to large-scale attacks. Motivated by this reality, we
introduce a simple model of network disruption to capture this
phenomenon, where an adversary can take over a limited number
of user profiles in a social network with the aim of maximizing
disagreement and/or polarization in the network. We investigate
this model both theoretically and empirically. We show that the
adversary will always change the opinion of a taken-over profile to
an extreme in order to maximize disruption. We also prove that an
adversary can increase disagreement/polarization at most linearly
in the number of user profiles it takes over. Furthermore, we
present a detailed empirical study of several natural algorithms for
the adversary on both synthetic networks and real world (Reddit
and Twitter) data sets. These show that even simple, unsophis-
ticated heuristics, such as targeting centrists, can disrupt a network
effectively, causing a large increase in disagreement / polarization.
Studying the problem of network disruption through the lens of an
adversary thus highlights the severity of the problem.

Index Terms—social networks, polarization, misinformation.

I. INTRODUCTION

RECENT years have seen a significant increase in the spread

of misinformation, a phenomenon which has been acceler-

ated and amplified by social media such as Facebook andTwitter.

This problem has been widely studied empirically [1]–[5]. By

and large, the main solution proposed to tackle the spread of mis-

information is to develop automated fake news detection tools

(e.g., [6]). However, there are huge challenges to overcome to

make this viable. To start, simply defining what is false vs. true is

often controversial and by now has been hugely politicized.

Moreover, rapid advances in machine learning have made

possible the creation of fake audio and video that are convinc-

ingly realistic, hence the problem of detection will only become

worse in the coming years.

Here we consider a completely different angle. While some

actors spread misinformation to push a specific agenda, it has

also been widely documented [7], [8] that others aim to sim-

ply disrupt the network by increasing disagreement and polari-

zation across the network, thereby destabilizing society.

Popular social networks are also vulnerable to large-scale

attacks in which attackers have the ability to take over

accounts—in September 2018 it was revealed that nearly 50

million Facebook users were compromised in a data breach

this way [9]. Motivated by this reality, we introduce a simple

model of network disruption to capture this phenomenon,

where an adversary can take over some user profiles in a social

network with the aim of maximizing disagreement and/or

polarization in the network.

How should adversaries choose profiles, and how much dis-

ruption can this cause to the network? Does the adversary

have to be sophisticated to cause significant disruption? Or

can they achieve their goal via simple, unsophisticated heuris-

tics? How do the answers to these questions depend on proper-

ties of the underlying social network? We answer these

questions in this paper, and the results highlight the impor-

tance of considering an adversarial perspective in the ultimate

goal of counteracting the harmful effects of malicious actors.

A. Modeling Network Disruption

Our key conceptual contribution is the introduction of an

adversarial model of network disruption, based on the con-

cepts of polarization and disagreement. First, we describe how

the network evolves over time and how the final expressed

opinions are used to compute polarization and disagreement.

Then, we present the adversarial model that sets up how an

adversary is allowed to choose profiles to maximize

disruption.

1) Measuring Disruption: We model the underlying social

network as a weighted graph G ¼ ðV;E;wÞ, where V is the

set of vertices, corresponding to the users of the social net-

work; E is the set of edges, connecting users who know each

other; and w : E ! ½0; 1� is a weight function on the edges

that describes the strength of the ties between users. Now con-

sider a topic that everyone has an opinion about—gun
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ownership, the amount of taxation, or your favorite controver-

sial topic. We assume that everyone has an innate opinion

about this topic and that this opinion can be quantified by a

number in the interval [0,1]; for instance, 0 corresponds to

strict gun control while 1 corresponds to no gun control. The

innate opinions are denoted by s ¼ fsvgv2V 2 ½0; 1�V .
People interact with their acquaintances on the social net-

work and exchange opinions. As a result, their expressed opin-

ions evolve and finally reach an equilibrium, which we denote

by z ¼ fzvgv2V 2 ½0; 1�V . To be specific, in this paper we con-

sider a simple model of opinion dynamics—known as the

Friedkin-Johnsen model [10]—where users iteratively update

their expressed opinions by taking a weighted average of the

opinions of their friends and their own innate opinion. This

results in the equilibrium opinions being z ¼ ðI þ LÞ�1s,
where I is the identity matrix and L is the (weighted) Lapla-

cian matrix. We emphasize that, while we focus on the Fried-

kin-Johnsen model, the questions that we consider about

adversarial network disruption can be studied for other opin-

ion dynamics models as well.

The equilibrium opinions z have various properties that we

care about. Following [11], we introduce the following two

important quantities. Disagreement is defined as

D � DðzÞ :¼
X

ðu;vÞ2E
wu;v zu � zvð Þ2;

(1)

this measures how much acquaintances disagree in their opin-

ions, globally across the network. Polarization is defined as

P � P ðzÞ :¼
X
v2V

zv � zð Þ2; (2)

where z :¼ 1
jV j

P
v2V zv is the mean opinion; in other words, P

is the variance of the opinions, multiplied by the number of

vertices. We refer to [11] for a detailed discussion of these

quantities, as well as related ones.

2) Modeling the Adversary: We now turn to modeling an

adversarial perspective on network disruption, which is the

key new idea introduced in the paper. Motivated by practical

examples of hackers taking over a set of accounts, we consider

an adversary that has a budget of k nodes it can control. We

additionally must factor in how real users react to malicious

accounts in order to delineate the adversary’s capabilities as to

not raise suspicion. For this purpose, we do not allow the

adversary to change the graph structure (such as suddenly add-

ing many new friends or shifting target audience) or interfere

with the opinion dynamics (such as having the hacked nodes

remain stubborn and ignore their friends’ opinions). We thus

assume the adversary can only change the innate opinions of k
nodes. Since the adversary is not directly changing the

expressed opinion, even extreme innate opinions are

expressed subtly, raising less suspicion. One real world exam-

ple motivating our adversarial model is ISIS’s use of Twitter

accounts to recruit new members—on the surface, the tweets

and accounts did not appear out of the normal even though

they pushed a malicious agenda [12].

Formally, we consider an adversary who can take over k
nodes of the network and modify the innate opinions of

these nodes arbitrarily. That is, the adversary can select

s0 2 ½0; 1�V such that ks0 � sk0 � k. Therefore, assuming

the Friedkin-Johnsen model, the resulting equilibrium opin-

ions will be z0 ¼ ðI þ LÞ�1s0 and these will result in new

values of disagreement D0 and polarization P 0. The goal of

the adversary is to pick s0 in such a way that maximizes

disagreement D0 or polarization P 0. See Fig. 1 for an

illustration.1

Fig. 1. Schematic of the adversarial model of network disruption. Top: On a particular topic everyone has an innate opinion, resulting in the innate opinion vec-
tor s 2 ½0; 1�V . These are mapped to equilibrium opinions z 2 ½0; 1�V via the opinion dynamics. The equilibrium opinions give rise to natural quantities: disagree-
ment D and polarization P . Bottom: The adversary can take over at most k nodes in the network and change their innate opinions, resulting in the new innate
opinion vector s0 2 ½0; 1�V . The opinion dynamics are unchanged, resulting in new equilibrium opinions z0 2 ½0; 1�V , and subsequently new values of
disagreementD0 and polarization P 0. The goal of the adversary is to maximize disagreement and/or polarization.

1Throughout the paper we only ever use the function Dð�Þ with two argu-
ments: z and z0. Thus, for simplicity, we denote the corresponding function
values by D and D0. We hope the reader forgives the slight abuse of notation,
in exchange for simplicity. (The same goes for polarization.)
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B. Questions and Challenges

We open with a general question: what is the optimal solu-

tion for the adversary? That is, how should they pick the set of

k vertices to hack, and how should they set the innate opinions

of hacked vertices? We show that any optimal solution will

set the innate opinions to an extreme; that is, if s0v 6¼ sv then

s0v 2 f0; 1g. Thus a brute force approach can find an optimal

solution by checking all n
k

� �
2k possibilities, where n denotes

the number of vertices. This is not feasible when k is large—

so is there an efficient (polynomial time in n) algorithm to

find an optimal solution? The function that we are maximizing

is not submodular (see Section V) and hence off-the-shelf

greedy algorithms and their guarantees do not apply directly.

Regardless if they can efficiently find an optimum or not, it

is important to understand the limits of an adversarial attack

under our model, prompting the next question: what is an

upper bound on the amount of disruption an adversary can

cause? We find that our measurement of disruption scales at

most linearly in the number of profiles taken over. However,

this scaling may only hold for sophisticated, knowledgeable

algorithms, while it may be argued that in most cases knowing

all the innate opinions exactly is unrealistic, and in other cases

knowing the entire social network structure is difficult. There-

fore, can the adversary cause this significant extent of disrup-

tion knowing only the network structure and nothing (or close

to nothing) about the innate opinions, and vice versa? Can

simple heuristics perform well, and how does performance

depend on properties of the underlying social network? We

investigate these questions.

II. RESULTS

A. Theoretical Results

We analyze characteristics of the optimal solution and how

polarization and disagreement scale with it. Our first result is

intuitive: no matter which set of vertices the adversary choo-

ses, the optimal way to modify the innate opinions of these

nodes is to set them to one of the two extremes: 0 or 1. That is,

radicalizing the taken-over account rather than giving them

neutral opinions is more effective, although we again note that

extreme innate opinions still give way to more subtle

expressed opinions. In particular, we have the following result.

Theorem 1 (The adversary chooses extreme opinions):

Consider the problem setup as above, with the adversary max-

imizing either disagreement, polarization, or a conical combi-

nation of these two (i.e., a linear combination with

nonnegative coefficients). Assume that G has no isolated ver-

tices. Let s0 be an optimum vector of innate opinions, given

the constraints (formalized in Section IV). For every v 2 V , if

s0v 6¼ sv, then s
0
v 2 f0; 1g.

This result follows from the convexity of the objective func-

tions, together with the fact that the adversary is maximizing

the objective function (see Section V for the proof). This

implies that if the adversary has a budget of k (i.e., it can take

over at most k nodes), then a brute force approach can find an

optimal solution by checking all n
k

� �
2k possibilities, where n

denotes the number of nodes. For constant k this gives a poly-

nomial-time algorithm, but it performs poorly as k grows. In

fact, we conjecture that solving the optimization problem of

the adversary is computationally hard when k is large (e.g.,

k ¼ n" for constant " 2 ð0; 1Þ), which is a direction for future

work.

Next, we examine quantitatively the effect that the adver-

sary can have on disagreement and polarization. First, we

prove that the adversary can only increase disruption linearly

in k. Specifically, for the polarization objective we show that

the increase is always bounded above by 3k; this is the content
of the following theorem.

Theorem 2 (Upper bound on the increase in polarization):

Let G be a weighted graph and s a vector of innate opinions

such that the resulting equilibrium opinion vector z has

polarization P . Suppose that the adversary has a budget of k;
that is, the adversary may select s0 2 ½0; 1�V such that ks0 �
sk0 � k. Let P 0 be the polarization of the resulting equilibrium
opinion vector z0 ¼ ðI þ LÞ�1s0. Then

P 0 � P þ 3k:

For the disagreement objective, our result gives a bound of

8dmaxk, where dmax is the (weighted) maximum degree. Thus

for bounded-degree graphs this is still OðkÞ.
Theorem 3 (Upper bound on the increase in disagreement):

Let G be a weighted graph and s a vector of innate opinions

such that the resulting equilibrium opinion vector z has

disagreement D. Suppose that the adversary has a budget of k;
that is, the adversary may select s0 2 ½0; 1�V such that ks0 �
sk0 � k. Let D0 be the disagreement of the resulting equilib-

rium opinion vector z0 ¼ ðI þ LÞ�1s0. Then

D0 � Dþ 8dmaxk;

where dmax :¼ maxv2V
P

u2V wv;u is the (weighted) maxi-

mum degree.

B. Empirical Results

The theoretical results above lead to a natural question: can

the adversary achieve an increase in these objective functions

that grows linearly with k? We show empirically, on both syn-

thetic and real data sets, that this is indeed the case for a range

of heuristics.

We first consider a greedy algorithm, where the adversary

iteratively selects nodes to take over, in each iteration choos-

ing the node, together with one of the two extreme opinions,

that maximizes the objective function. While this greedy algo-

rithm is natural, it also uses detailed information: specifically,

it assumes perfect knowledge of the network G and the innate

opinions s. Since this may be unrealistic in practice, we also

consider simpler heuristics for the adversary.

One such heuristic, which we term the “mean opinion” heu-

ristic, is to choose the node whose (innate) opinion is closest

to the mean and change it to one of the two extremes (either

by optimizing this choice or just randomly). Such a heuristic

can easily be implemented approximately by an adversary,
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since often it is possible to deduce whether someone has a cen-

trist opinion by using extra information available about the

node. Furthermore, it may be the case that the adversary has

only approximate information about the (innate) opinions, for

instance, perhaps they are “rounded” to the set f0; 1=2; 1g
(which corresponds to the two extremes and the center); in

such a scenario, this heuristic is natural.

Another heuristic, which we term the “max degree” heuris-

tic, focuses on a simple function of the underlying graph struc-

ture: iteratively choosing the largest degree nodes (in either a

weighted or unweighted sense) and changing their opinion to

one of the two extremes. This is motivated by practical scenar-

ios where the network topology is only partially known; for

instance, if only the node degrees are known, then this heuris-

tic is natural.

We also compare all the algorithms to a random baseline,

where the adversary selects nodes randomly and changes their

opinions to random extremes—note that this approach is infor-

mation agnostic.

We evaluate these algorithms on both synthetic and real

data sets. For synthetic networks we use three common proba-

bilistic generative models: Erdo��s-R�enyi random graphs [13],

[14], the preferential attachment model [15], and the stochas-

tic block model [16], [17]. We also study Reddit and Twitter

data sets that were collected in [18] and subsequently studied

in [11].

Our main empirical finding is that in almost all settings—

meaning, a network (synthetic or real, as above), an algorithm

(from the ones described above), and an objective function

(disagreement, polarization, or a conical combination)—the

adversary succeeds in increasing its objective function linearly

in k. The rate of increase depends on the details: the greedy

algorithm performs best among these options, but the mean

opinion heuristic is often not far behind. Even the random

baseline gives a linear increase in k in several (though not all)

settings.

We note that our empirical results only consider iterative

algorithms. In principle, algorithms that are not iterative (e.g.,

inefficient algorithms such as brute force) could do much bet-

ter than iterative ones. However, the upper bounds of Theo-

rems 2 and 3 show that this is not possible: no matter the

algorithm, only at most linear increase in k is possible for

polarization/disagreement.

The details of all our empirical results are in Section VII

below. All code and data has been posted to a public GitHub

repository, available at https://github.com/mayeechen/network-

disruption.

III. RELATED WORK

The diffusion of information through networks is an impor-

tant phenomenon in many disciplines. One common problem

related to ours is Influence Maximization (IM), where one

must select a subset of nodes to inject information into in order

to maximize the number of influenced nodes by the end of the

diffusion process [19]. Much work has been done on analyzing

the performance of greedy algorithms for this problem [20],

[21] (which, unlike ours, is submodular), and variants of it

have further been studied (e.g., see [22] for a survey). Our

problem instead focuses on opinion dynamics and considers a

different objective of maximizing disruption. This involves

not only the diffusion process but also the value of the innate

and expressed opinions and where they are in the network.

Opinion dynamics have been used in various disciplines to

model social learning (see, e.g., [23]). In seminal work, the

DeGroot model describes how individuals reach a consensus

through stochastic interactions [24]. Friedkin and Johnsen

extended this model to incorporate individuals’ intrinsic

beliefs and prejudices [10]. In the Friedkin-Johnsen model, all

agents have individual innate opinion values, and as time goes

on, agents interact with each other, updating their opinions to

be a weighted average of their innate opinion and the neigh-

boring agents’ opinions. Eventually, opinions converge to an

equilibrium, which is a non-constant function of the innate

opinions. This latter property is an important reason why we

use the Friedkin-Johnsen model for opinion dynamics in this

paper, in addition to its simplicity. The Friedkin-Johnsen

model can be extended in a variety of ways, for instance to

incorporate stubbornness and susceptibility to persuasion [25].

Several recent works have studied various network inter-

ventions to influence opinions in certain ways. Gionis, Terzi,

and Tsaparas [26] studied opinion maximization in social net-

works, which corresponds to pushing a specific agenda.

Abebe et al. [25] study a similar problem (opinion maximiza-

tion or minimization), but where interventions happen at the

level of susceptibility to persuasion. Bimpikis, Ozdaglar, and

Yildiz [27] study a game-theoretic model of targeted advertis-

ing in networks, which is again a similar objective; see also

the work of Lever on strategic competitions over net-

works [28]. Recent works of Mao et al. [29], [30] study com-

petitive information spread, with a focus on understanding

effects of confirmation bias.

In contrast, the work of Musco, Musco, and Tsouraka-

kis [11]—which serves as the starting point of our work—

studies polarization and disagreement, which are quite differ-

ent objectives. Even though one of their settings is a slightly

similar optimization problem with variable innate opinions,

their technical approach and motivation are very different

from our work since the goal of their work is to minimize

polarization and disagreement.

Our key conceptual contribution is to study the opposite

objective: maximizing polarization and disagreement. This

corresponds to an adversarial perspective, which is motivated

by recent developments over the past few years: malicious

actors have increasingly been working towards disrupting net-

works by increasing disagreement and polarization, thereby

destabilizing society [7]–[9], [31]. Also, the specific interven-

tion we consider is taking over nodes of a network and modi-

fying their (innate) opinions.

The recent paper [32] contains similar ideas to our work.

However, their focus is on the special case when society ini-

tially has a consensus (i.e., s ¼ 0), and this is perturbed by an

adversary that can modify the entire innate opinion vector.

They formalize the constraint on the adversary as an L2-norm
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bound, whereas we use the constraint ks0 � sk0 � k, which
has a clear interpretation in the adversary taking over at most

k nodes of the network. After our work appeared on the

arxiv, [32] was updated to consider Lp constraints; in particu-

lar, they prove a bound that slightly improves upon our Theo-

rem 3. We focus on understanding the vulnerability of innate

opinions and provide extensive empirical work demonstrating

that simple adversarial heuristics can cause significant disrup-

tion, while [32] focuses more on a theoretical understanding

of the network structure.

Finally, we note that there is a huge literature on under-

standing polarization in social networks, a complete overview

of which is beyond the scope of this article; we refer the reader

to [33], [34] and the references therein.

IV. PROBLEM SETUP

In this section we detail the problem setup for clarity. We

fix an undirected weighted graph G ¼ ðV;E;wÞ which repre-

sents the social network. Let n ¼ jV j denote the number of

vertices (we often write ½n� for the vertex set) and let m ¼ jEj
denote the number of edges. For convenience we define the

weight function on all pairs of nodes, with 0 < wi;j � 1 if

ði; jÞ 2 E and wi;j ¼ 0 otherwise. We also set wi;i ¼ 0 for all

i 2 V .

Let di ¼
P

j2V wi;j denote the (weighted) degree of node i
and let D be the diagonal matrix with entries d1; . . . ; dn on the

diagonal. Let A denote the (weighted) adjacency matrix of G,

with Ai;j :¼ wi;j for i; j 2 V . Let L ¼ D� A denote the

weighted combinatorial Laplacian of G, which we refer to just

as the Laplacian of G. Finally, let~1 denote the all-ones vector.
Opinion dynamics: Let s ¼ ðs1; . . . ; snÞ 2 ½0; 1�n denote the

vector of innate opinions. In the Friedkin-Johnsen model of

opinion dynamics [10], agents interact with each other as time

goes on, updating their opinions to be a weighted average of

their innate opinion and the neighboring agents’ opinions. For-

mally, if z
ðtÞ
i denotes the expressed opinion of node i at time t

(where t 2 f0; 1; 2; . . .g), then initially z
ð0Þ
i ¼ si and the

update for t � 0 is given by

z
ðtþ1Þ
i ¼ si þ

P
j2V wi;jz

ðtÞ
j

1þP
j2V wi;j

:

As t ! 1, the vector of opinions converges to an equilibrium

vector z that satisfies

z ¼ I þ Lð Þ�1s; (3)

where I is the n� n identity matrix.

Disagreement and polarization. Following [11], we study

the disagreement DðzÞ and the polarization P ðzÞ of a vector

of opinions z; see (1) and (2) for the definitions. Note that

since the equilibrium opinion vector z is a function of the

innate opinion vector s, disagreement D and polarization P
can be considered functions of s as well, in which case we

will denote them by DðsÞ and P ðsÞ, respectively. When clear

from the context, we may denote these by just D and P . We

also study linear combinations of these two quantities.

The objectives of the adversary. We are now ready to math-

ematically formulate our original questions as three optimiza-

tion problems with varying objective functions. For any

weighted graph G, innate opinions s, and budget k 2 N, the

adversary aims to determine the optimal modified innate opin-

ion vector s0 according to the following.
	 Problem 1: Disagreement

maximize D z0ð Þ
subject to z0 ¼ ðI þ LÞ�1s;0

s0 2 ½0; 1�n;
jjs0 � sjj0 � k:

(4)

	 Problem 2: Polarization

maximize P z0ð Þ
subject to z0 ¼ ðI þ LÞ�1s;0

s0 2 ½0; 1�n;
jjs0 � sjj0 � k:

(5)

	 Problem 3: Weighted Sum

maximize P z0ð Þ þ �
n

m
D z0ð Þ

subject to z0 ¼ ðI þ LÞ�1s;0

s0 2 ½0; 1�n;
jjs0 � sjj0 � k:

(6)

Note that in (6), we introduce � as a parameter to describe

the relative importance of disagreement versus polarization to

the adversary. For this weighted sum index, we have scaled

disagreement by
jV j
jEj ¼ n

m so that the two terms have the same

order of magnitude when � ¼ 1.

V. CONVEXITY AND CHOOSING EXTREME OPINIONS

In this section we prove Theorem 1 and also demonstrate

the lack of submodularity of the described problems. For all

three optimization problems, the set of constraints do not form

a convex set due to the constraint jjs0 � sjj0 � k. However,
we prove that all of the objective functions are convex in s0,
which implies that s0i 2 f0; 1g for all vertices i where s0i 6¼ si.
Lemma 4: Disagreement is convex in s0. That is, the func-

tion s0 7!Dðs0Þ is convex.
Proof: Disagreement can be written in quadratic form as

z0TLz0. Noting that I þ L is symmetric and using (3), D can

be expressed as

D s0ð Þ ¼ z0TLz0 ¼ ð I þ Lð Þ�1s0ÞTLð I þ Lð Þ�1s0Þ
¼ s0T I þ Lð Þ�1L I þ Lð Þ�1s0:

The LaplacianmatrixL is positive semidefinite and symmetric, so

L can be written asL ¼ BTB for somematrixB 2 Rn�n. There-

fore, ðI þ LÞ�1LðI þ LÞ�1 ¼ ðI þ LÞ�1BTB ðI þ LÞ�1 ¼
ðBðI þ LÞ�1ÞT ðBðI þ LÞ�1Þ, so ðI þ LÞ�1LðI þ LÞ�1

is also

positive semidefinite. Thus we can writeD as a quadratic form in

terms of s0, with a positive semidefinitematrix, soDðs0Þ is convex
in s0. &
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Lemma 5: Polarization is convex in s0. That is, the function
s0 7!P ðs0Þ is convex.
Proof: For notational convenience we drop all apostrophes

from the notation. For a vector x 2 Rn let ex :¼ x� x~1 denote

the centered vector. With this notation we have P ðzÞ ¼ ezTez.
Observe that L~1 ¼ 0, and so ðI þ LÞ~1 ¼~1 and ðI þ

LÞ�1~1 ¼~1. Using (3) this implies that z ¼ 1
n z

T~1 ¼
1
n z

T ðI þ LÞ�1~1 ¼ 1
n s

T~1 ¼ s. In words, the mean equilibrium

opinion is the same as the mean innate opinion. This, in turn,

implies that ez ¼ ðI þ LÞ�1es. With this notation we have that

P ðzÞ ¼ ezTez ¼ esT I þ Lð Þ�1
� �2es:

For a vector x 2 Rn define fðxÞ :¼ xT ððI þ LÞ�1Þ2x and

gðxÞ :¼ x� x~1 ¼ ex. Note that ððI þ LÞ�1Þ2 is positive semi-

definite, since it is the square of ðI þ LÞ�1
, which is positive

semidefinite and symmetric. This implies that f is convex,

since it is a quadratic form with a positive semidefinite matrix.

Note also that for any two vectors x; y 2 Rn and a 2 ½0; 1� we
have that gðaxþ ð1� aÞyÞ ¼ agðxÞ þ ð1� aÞgðyÞ. There-

fore the convexity of P ¼ f 
 g follows directly from the con-

vexity of f . &

An immediate consequence of Lemmas 4 and 5 is that any

conical combination of disagreement and polarization is con-

vex in s0. This is because convexity is preserved by scaling

with a positive constant, as well as across addition. Therefore

our conclusions extend to the objective function of Problem 3

(see (6)) as well.

Proof of Theorem 1: Lemmas 4 and 5 show that the

adversary’s optimization problem is a convex maximization

problem in s0. Moreover, if G has no isolated vertices then

this is a strictly convex maximization problem. Therefore any

coordinate of s that is changed in s0 must be changed to an

extreme: 0 or 1. &

We conclude this section by a simple example that shows

that the objective functions we are considering are not sub-

modular. First, recall that a set function f : f0; 1gV ! R is

submodular if for every S; T � V with S � T and for every

v 2 V n T we have that fðS [ fvgÞ � fðSÞ � fðT [ fvgÞ �
fðT Þ. In words, submodular functions have a diminishing

returns property.

Example 1 (A single edge): Consider a graph with two

nodes, denoted 1 and 2, with an edge between them with

weight w1;2 ¼ 1. Suppose that the innate opinions are initially
centrist: s1 ¼ s2 ¼ 1=2. In this case the equilibrium opinions

are also centrist: z1 ¼ z2 ¼ 1=2, leading to no disagreement or

polarization:DðzÞ ¼ P ðzÞ ¼ 0.
If an adversary has a budget of k ¼ 1, they will change the

innate opinion of a(n arbitrary) node to an (arbitrary) extreme:

s01 ¼ 0, s02 ¼ 1=2. This results in the equilibrium opinions

z01 ¼ 1=6 and z02 ¼ 1=3, giving disagreement Dðz0Þ ¼ 1=36
and polarization P ðz0Þ ¼ 1=72.

If an adversary has a budget of k ¼ 2, they will change the

innate opinions to opposite extremes: s001 ¼ 0, s002 ¼ 1. This
results in the equilibrium opinions z001 ¼ 1=3 and z002 ¼ 2=3,

giving disagreement Dðz00Þ ¼ 1=9 and polarization P ðz00Þ ¼
1=18.

For both disagreement and polarization the increase in the

second step is greater than the increase in the first step, and

hence these objective functions are not submodular.

Because all three objective functions are not submodular,

we are unable to apply the theoretical guarantees of greedy

algorithms for submodular maximization (e.g., [35]). We

instead focus directly on bounding the extent of disruption an

adversary can cause, independent of the algorithm, and then

conduct an empirical study to evaluate the performance of

greedy algorithms with respect to this bound.

VI. BOUNDS ON NETWORK DISRUPTION

In this section we prove Theorems 2 and 3. We start with a

preliminary lemma which gives a bound on the L1-norm of

the difference between the modified equilibrium opinion vec-

tor z0 and the original equilibrium opinion vector z.
Lemma 6: Let s be the original innate opinion vector and

let s0 be the modified innate opinion vector, satisfying ks0 �
sk0 � k. Let z and z0 be the respective equilibrium opinion

vectors. Then

z0 � zk k1� k:

Proof: Since z ¼ ðI þ LÞ�1s, we have that

z0 � zk k1 ¼ I þ Lð Þ�1 s0 � sð Þ�� ��
1

�
Xn
i¼1

Xn
a¼1

s0a � sa
� �

I þ Lð Þ�1
ia

�� ��
¼

Xn
i¼1

Xn
a¼1

s0a � sa
�� �� I þ Lð Þ�1

ia ;

where the inequality is due to the triangle inequality and the

final equality is because the entries of ðI þ LÞ�1
are nonnega-

tive. Without loss of generality, assume that nodes 1; . . . ; k
comprise the set of nodes taken over by the adversary. Since

si 2 ½0; 1�, we must have js0i � sij � 1 for all i. Thus

z0 � zk k1�
Xn
i¼1

Xk
a¼1

s0a � sa
�� �� I þ Lð Þ�1

ia �
Xn
i¼1

Xk
a¼1

I þ Lð Þ�1
ia :

Now interchanging the order of summation we have that

Xn
i¼1

Xk
a¼1

I þ Lð Þ�1
ia ¼

Xk
a¼1

Xn
i¼1

I þ Lð Þ�1
ia ¼

Xk
a¼1

1 ¼ k:

Here we used the fact that the column sums of ðI þ LÞ�1
are all

equal to 1, which follows from the fact that ðI þ LÞ�1~1 ¼~1
(shown in Section V) and that ðI þ LÞ�1

is symmetric. &

A. Bound on the Increase in Polarization

Proof of Theorem 2: We first rewrite P 0 in a way to make P
appear. This can be done by adding and subtracting under the

square, and then expanding the square:
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P 0 ¼
Xn
i¼1

z0i � z0
� �2¼ Xn

i¼1

z0i � zi þ zi � zþ z� z0
� �2

¼ P þ
Xn
i¼1

z0i � zi
� �2 þ n z� z0ð Þ2 þ 2

Xn
i¼1

z0i � zi
� �

zi � zð Þ

þ 2
Xn
i¼1

z0i � zi
� �

z� z0ð Þ þ 2
Xn
i¼1

zi � zð Þ z� z0ð Þ: (7Þ

Since
Pn

i¼1ðzi � zÞ ¼ 0, the last term in (7) is zero. The first term

in (7) is equal to �2nðz� z0Þ2, because
Pn

i¼1ðz0i � ziÞ ¼
nðz0 � zÞ. Plugging this back into the display abovewe obtain that

P 0 ¼ P þ
Xn
i¼1

z0i � zi
� �2þ2

Xn
i¼1

z0i � zi
� �

zi � zð Þ � n z� z0ð Þ2:

(8)

The last term in (8) is nonpositive, so we may drop it. For the

first sum in (8), note that zi 2 ½0; 1� for every i 2 ½n�, so ðz0i �
ziÞ2 � jz0i � zij. Together with Lemma 6 this shows thatPn

i¼1ðz0i � ziÞ2 � k. Finally, for the other sum in (8), using

the bound jzi � zj � 1 we have that
Pn

i¼1ðz0i � ziÞðzi � zÞ �Pn
i¼1 jz0i � zij � k. Altogether this shows that P 0 � P þ 3k

as desired. &

B. Bound on the Increase in Disagreement

Proof of Theorem 3: We start by rewriting D0 in a way to

make D appear. This can be done by adding and subtracting

under the square, and then expanding the square. In the fol-

lowing all summations over i and j go from 1 to n, so we do

not write this out further.

D0 ¼
X
i;j

wi;j z0i � z0j
� �2

¼
X
i;j

wi;j z0i � zi þ zi � zj þ zj � z0j
� �2

¼ Dþ
X
i;j

wi;j z0i � zi
� �2þ z0j � zj

� �2
�

þ 2 z0i � zi
� �

zj � z0j
� �

þ 2 zi � zj
� �

z0i � zi þ zj � z0j
� �o

:

We now bound the four sums above. The first two sums are

equal by symmetry, and we have that

X
i;j

wi;j z0i � zi
� �2þ z0j � zj

� �2
� 	

¼ 2
X
i;j

wi;j z0i � zi
� �2

¼ 2
X
i

di z0i � zi
� �2� 2dmax

X
i

z0i � zi
�� �� � 2dmaxk;

where we used Lemma 6 for the last inequality and the fact

that jz0i � zij 2 ½0; 1� in the inequality before that. Next, using

the inequality ðz0i � ziÞðzj � z0jÞ � jz0i � zij we have that

2
X
i;j

wi;j z0i � zi
� �

zj � z0j
� �

� 2
X
i;j

wi;j z
0
i � zi

�� �� � 2dmaxk:

Finally, we use the bound ðzi � zjÞðz0i � zi þ zj � z0jÞ �
jz0i � zij þ jz0j � zjj to obtain that

2
X
i;j

wi;j zi � zj
� �

z0i � zi þ zj � z0j
� �

� 2
X
i;j

wi;j z0i � zi
�� ��þ zj � z0j

��� ���� �
¼ 4

X
i;j

wi;j z
0
i � zi

�� ��
� 4dmaxk:

Putting everything together we obtain that D0 � Dþ 8dmaxk
as desired. &

VII. ALGORITHMS AND EXPERIMENTS

We analyze the performance of the different heuristics

across our three objectives and comment on how factors in the

underlying social network—such as the degrees of the vertices

and the distribution of innate opinion vectors—play a role. In

particular, in our experiments we consider maximizing dis-

agreement D, polarization P , and a weighted sum P þ n
mD

(i.e., � ¼ 1). In the descriptions of the algorithms, we refer to

the adversary’s objective as f .

A. Algorithms for the Adversary

We present six adversarial heuristics that are designed

under varying levels of information available about the net-

work structure and opinions. We start with a natural greedy

algorithm and then turn to other simpler heuristics. All algo-

rithms below are iterative, picking vertices one at a time until

at most k vertices have been selected. We denote by V the set

of vertices that have already been selected by the adversary;

initially V ¼ ;.
GREEDY. In each iteration i, we select a vertex and set its

opinion to 0 or 1 to result in the greatest increase in the objec-

tive function fððI þ LÞ�1s0Þ, given that i� 1 opinions have

already been picked and modified according to this algorithm.

We then add this vertex to V, update s0, and repeat k times. If

no modification results in an increase in the objective function

at the ith iteration, with i < k, then we stop.
MEAN OPINION. First, we select the index j� such that

j� :¼ argmax
j =2 V

s0j �
1

n

Xn
i¼1

s0i

�����
�����:

In words: among opinions that have not been changed yet, we

choose the vertex whose opinion is closest to the current

network’s average opinion to be j�. Second, we must change

the opinion s0j� to 0 or 1. To do this, we optimize and set

s0j� ¼ a� :¼ arg maxa2f0;1gffððI þ LÞ�1s0Þ : s0j� ¼ ag.
Note that the first step of this heuristic does not require any

knowledge of the underlying graph structure, which can be the

case in practice when edges are unknown; for instance, when

hiding a list of followers or friends. Furthermore, if the
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adversary only has a rough idea of the nodes’ opinions, this

heuristic is intuitive and implementable approximately: pick a

“centrist” node with the most neutral opinion.

MEAN OPINION (RANDOMIZED). This algorithm is similar to

the MEAN OPINION algorithm, except the second step is

replaced with randomly picking s0j� to be equal to 0 or 1 with

equal probability. This algorithm can thus be entirely per-

formed without knowledge of the underlying graph.

MAX DEGREE. First, we select the index j� such that

j� :¼ argmax
j2V

X
i2V

1 wi;j > 0f g:

In words: we choose our vertex to be the one that is connected

to the most other vertices in the network. Second, we optimize

the opinion s0j� as in MEAN OPINION.

MAX WEIGHTED DEGREE. This algorithm is similar to MAX

DEGREE, except in the first step we choose j� by maximizing

the weighted degree: j� :¼ arg maxj2V
P

i2V wi;j.

The latter two algorithms exploit the network structure in a

simple way and so they may be practical for an adversary that

has access to the underlying graph but may not have the means

or data necessary to deduce what the opinions are.

RANDOM. First, select a vertex j� =2 V uniformly at random.

Second, set s0j� to either 0 or 1 with equal probability. This

completely random algorithm offers a natural baseline to com-

pare against.

B. Synthetic Experiments

We evaluate the algorithms described above on synthetic

networks generated using three probabilistic models: the

Erdo��s-R�enyi model, the preferential attachment model, and

the stochastic block model. In all three cases, our results sug-

gest that GREEDY, MEAN OPINION, and MEAN OPINION (RANDOM-

IZED) cause disruption that scales linearly in k.
For each of the models, we generate a random graph with

n ¼ 1000 vertices. Weights on the edges are chosen indepen-

dently and uniformly at random from (0,1) (and nonedges

have zero weight). We experiment with k in the range 0 � k �
n=2. For each iteration until n=2, we plot the disagreement,

polarization, and weighted sum when the adversary disrupts

the network according to the six algorithms presented.2

Erdo��s-R�enyi model. In the Erdo��s-R�enyi model [13], [14]

every pair of nodes is connected independently with some

probability p 2 ½0; 1�. This model serves as a natural null

model for random graphs, with no underlying structure. In

Fig. 2 we take p ¼ 0:2; other values of p show qualitatively

similar behavior. We set the innate opinion vector s to have

i.i.d. values which are uniformly distributed in ½0; 1�.
The simulated performance of the six algorithms are shown

in Fig. 2 (top row). We observe that all three objective func-

tions are increasing roughly linearly in k, for all six

algorithms, with the GREEDY algorithm performing the best.

We also see that MEAN OPINION and MEAN OPINION (RANDOM-

IZED), the two heuristics that exploit the innate opinion vector,

perform better than MAX DEGREE and MAX WEIGHTED DEGREE,

which exploit network structure. In fact, the latter two heuris-

tics appear to be only slightly better than the RANDOM baseline

for all three objectives.

Preferential attachment model. Compared to Erdo��s-R�enyi
random graphs, more realistic graphs can be constructed with

the preferential attachment process [15]. While the Erdo��s-
R�enyi random graph serves as a natural null model for a net-

work with no structure, the preferential attachment process

instead follows the natural concept that vertices that are more

connected will receive more edges in the future. This is often

true in social networks; for instance, new accounts on a social

media platform are perhaps more likely to follow a popular

account rather than a less known one. We choose to generate a

network using a preferential attachment process with parame-

term ¼ 5, meaning that at each time step, a new vertex is con-

nected to m existing nodes, choosing each existing node with

probability proportional to its degree. We again set the innate

opinion vector s to have i.i.d. values which are uniformly dis-

tributed in ½0; 1�.
The simulated performance of the six algorithms are shown

in Fig. 2 (middle row). Relatively, the greedy algorithm still

has the best performance, followed by MEAN OPINION and

MEAN OPINION (RANDOMIZED) for the k defined in the synthetic

experiments, and the performance of all algorithms seems to

increase linearly in this range of k. We observe, however, that

while MAX DEGREE and MAX WEIGHTED DEGREE start out worse

than pure randomization, they appear eventually to surpass

RANDOM and increase at a rate faster than other algorithms.

Lastly, we observe that the scale of the objectives is signifi-

cantly larger than is observed for the Erdo��s-R�enyi model (see

the top row of Fig. 2); perhaps this is due to the Erdo��s-R�enyi
graph being much denser and thus “averaging” all the opinions

more.

Stochastic block model. The stochastic block model [16],

[17] is able to represent planted clusters, unlike the other mod-

els we consider. These sorts of communities often arise in

social networks, as seen in the Twitter data set which we dis-

cuss below. We consider the simplest version of the stochastic

block model, with two communities C1 and C2 each of size

n=2. Let the connectivity within both communities have

parameters p11 ¼ p22 ¼ 0:7, that is, pairs of vertices within

the communities share an edge with probability 0.7 (indepen-

dently across pairs), and let the connectivity between the two

communities have parameter p12 ¼ 0:1. Moreover, different

communities often have different opinion distributions. There-

fore, in our experiments we set the innate opinions sv for v 2
C1 to be independent draws from the Betað5; 2Þ distribution,
while the opinions of sv for v 2 C2 are i.i.d. Betað2; 5Þ. This
means that opinions in C1 are biased towards 1, and opinions

in C2 are biased towards 0. Experiments with different param-

eters show similar qualitative behavior.

The simulated performance of the six algorithms are shown

in Fig. 2 (bottom row). Similar to the other synthetic

2 To clarify, each figure presents results for a single realization of the ran-
dom setup (random graph and innate opinions) and, for randomized algo-
rithms, a single realization of randomness in the algorithm. We do this so that
curves represent the trajectory of a single adversary’s action.
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experiments, the GREEDY and MEAN OPINION algorithms per-

form the best across the three objectives, increasing linearly in

k. However, in this case the RANDOM baseline actually

decreases the value of all three objectives, while MEAN OPIN-

ION (RANDOMIZED) decreases for polarization and the weighted

sum. We conjecture that this is because choosing between 0

and 1 heavily depends on which community j� is in due to

how the innate opinions are generated using two beta distribu-

tions rather than just a uniform distribution over ½0; 1�.

C. Analysis of Reddit and Twitter Data Sets

We also evaluate the six algorithms for the adversary on

two real data sets, finding that polarization and disagreement

can increase one order of magnitude when an adversary takes

over just 10% of the accounts. These data sets, one on Twitter

and one on Reddit, contain the edge set for the social networks

as well as the list of opinions of the users over time. They were

originally collected by [18] by tracking interactions between

users and using natural language processing techniques to

map text to opinions; they were subsequently studied in [11].

We pick the innate opinion vector to be the most recently

recorded opinion vector, which is also how [11] chooses

innate opinion vectors.

Twitter. This network has n ¼ 548 vertices and m ¼ 3638
edges, where the vertices represent the individuals tweeting

over a certain time period about a debate on the Delhi legisla-

tive assembly elections of 2013 (identified by a set of hash-

tags), and their opinions correspond to the sentiment of the

tweets. Each edge is an undirected interaction between users.

The simulated performance of the six algorithms on the

Twitter data set are shown in Fig. 3 (top row).3 The GREEDY

and MEAN OPINION algorithms still have the largest increases

in all three objectives for this data set, with the GREEDY algo-

rithm performing best. On the other hand, MEAN OPINION (RAN-

DOMIZED) and RANDOM perform relatively poorly, with MAX

DEGREE and MAX WEIGHTED DEGREE eventually outperforming

the former two for all three objectives. This relative ordering

Fig. 2. Performance of network disruption algorithms in synthetic experiments. Top row: under the Erdo��s-R�enyi model with p ¼ 0:2 and opinions distributed
according to Unið0; 1Þ.Middle row: under the preferential attachment model withm ¼ 5 and opinions distributed according to Unið0; 1Þ. Bottom row: under the
stochastic block model with p11 ¼ p22 ¼ 0:7, p12 ¼ 0:1, and opinions distributed according to Betað5; 2Þ and Betað2; 5Þ.

3Again, each figure presents results for a single realization of the random-
ness (for those algorithms that involve randomness). The same applies to the
bottom row of Fig. 3.
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of the performance of different algorithms is similar to that of

the stochastic block model discussed previously (Fig. 2, bot-

tom row). In fact, when the Twitter network is visualized, we

can see that there are two main communities, and a third

smaller and less dense community. Therefore, we can attribute

a lot of the performance results to the underlying community

structure. However, the distribution of innate opinions does

not follow two beta distributions, but instead is approximately

Gaussian with mean 0.602 and standard deviation 0.08, which

mitigates the decrease in performance that results from ran-

domly setting a� amid beta-distributed opinions.

In Table I, we list the exact values for disagreement, polar-

ization, and their weighted sum of the Twitter network when

the adversary uses the greedy algorithm, at the start of the

algorithm (k ¼ 0) and when k is equal to 20; 50; 100; 200.
This table suggests that, even if the adversary can only

change the opinions on 20 accounts (approximately 3.6% of

the nodes), the disagreement in the network increases by

over 4 times, while the polarization and weighted sum

increase by over 7 times. This quantitatively demonstrates

the significant amount of disruption—increase in disagree-

ment and polarization—that a malicious actor may inflict

upon a social network.

Reddit. This network has n ¼ 556 vertices and m ¼ 8969
edges, where the vertices represent individuals who have

posted in a politics subreddit, and their opinions correspond to

the sentiment in this subreddit over a certain time period.

There is an edge between users if they both post in at least two

other same subreddits. We also discard three vertices from

this graph that are not connected to any other vertices, as keep-

ing these vertices implies that algorithms can simply change

these opinions to yield large increases in polarization without

any consequences for the opinion dynamics.

The simulated performance of the six algorithms on the

Reddit data set are shown in Fig. 3 (bottom row).4 Again, the

greedy algorithm performs best, with a large increase espe-

cially for small k. While the graphs for polarization and for

the weighted sum have very noticeable jumps, for all three

objectives MEAN OPINION, MEAN OPINION (RANDOMIZED), and

RANDOM perform similarly. We conjecture that random is not

the worst in this case for two reasons: firstly, the Reddit data

set’s opinions roughly follow a Gaussian distribution with

mean 0.498 and standard deviation 0.04, meaning that the val-

ues are more tightly concentrated around a very neutral opin-

ion than the Twitter data set. Moreover, the distribution of

degrees of the vertices is more uniform than that of the Twitter

data set (which appears to follow a power law instead), sug-

gesting that arbitrarily choosing a vertex and then randomly

setting its opinion can still result in good performance.

In Table II, we list the exact values for disagreement, polari-

zation, and their weighted sum of the Reddit network when the

adversary uses the greedy algorithm at the start of the

Fig. 3. Performance of network disruption algorithms on real data sets. Top row: on a Twitter data set. Bottom row: on a Reddit data set.

TABLE I
VALUES OF OBJECTIVE FUNCTIONS FOR THE TWITTER DATA SET. THESE ARE

UNDER THE GREEDY ALGORITHM AT k ¼ 0 (original), 20, 50,
100, AND 200

4We remark that some of the curves in these figures have relatively big
jumps, a phenomenon that is not present in the figures about other networks. It
turns out that the Reddit data set has many nodes with degree 1, and these
larger jumps happen when the algorithm happens to pick these nodes to
change. All other networks appearing in the paper do not have nodes of degree
1, which is why this phenomenon does not appear in the other figures.
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algorithm (k ¼ 0) and when k is equal to 20; 50; 100; 200. This
table suggests that, even if the adversary can only change the

opinions on 20 accounts (approximately 3.6% of the nodes),

all objectives are able to increase roughly tenfold. Just like the

corresponding results for the Twitter data set, this quantita-

tively demonstrates the significant amount of disruption—

increase in disagreement and polarization—that a malicious

actor may inflict upon a social network.

VIII. CONCLUSION AND DISCUSSION

Our primary conceptual contribution is the introduction of

an adversarial model of network disruption. This presents an

important lens through which to study the unfortunate recent

trend of malicious actors interfering in social networks in

order to destabilize society.

The key conclusion from our results is that an adversary can

significantly disrupt a network—in particular, increasing dis-

agreement and polarization—using simple, unsophisticated

methods. This mirrors recent findings analyzing real-world

data; for instance, the authors in [31] conclude that the Internet

Research Agency’s operations to interfere with the 2016 U.S.

presidential election “were largely unsophisticated”. This

adversarial approach thus highlights the severity of the prob-

lem, and we hope this motivates further research into address-

ing it via strategies for defending against network disruption.

We list several avenues for further study in the following

bullet points, ranging from specific questions concerning the

model we studied to broad questions concerning adversarial

models on social networks.

	 Hardness of optimal network disruption: As mentioned

in Section II, we conjecture that solving the optimiza-

tion problem of the adversary is computationally hard

when k is large. Recent work of Gionis, Terzi, and Tsa-

paras [26] on a related opinion maximization problem

uses a reduction to vertex cover to show hardness; see

also [25] where this proof is adapted to another setting.

Adapting this proof to our setting is challenging due to

the different nature of our objective function, coupled

with the opinion dynamics whose effect is difficult to

isolate.

	 Performance guarantees for the adversary: In

Section VII we investigated empirically the perfor-

mance of several natural algorithms for the adversary,

on several different random graphs, as well as on Reddit

and Twitter data sets. While performances varied,

depending on the algorithm and the underlying social

network, one thing that most had in common was a lin-

ear growth in the objective function, as a function of the

budget k. Is it possible to prove such a performance

guarantee (at least for some heuristic)?

	 Other opinion dynamics: We focused here on the Fried-

kin-Johnsen model of opinion dynamics, but everything

we discussed can be studied under other models. How

robust are the results to such changes?

	 Other adversarial disruption models: We have consid-

ered a setup where an adversary can change the innate

opinions of k nodes in a network. While we discuss

the motivation behind our model in Section I-A2, we

may want to model how an adversary disrupts a net-

work in more nuanced ways. For instance, we can

combine our model with that of [25], which uses a sus-

ceptibility parameter to reflect how easily users are

influenced by (adversarial) opinions. We may also

want to consider a setting where adversaries can create

new accounts (i.e., bots), for which we would need to

both set opinions and add edges. Nonetheless, we hope

that the simplicity of our model, while it may not

completely represent the complex realities of social

networks, provides a first step into understanding

adversarial disruption.

	 Defense strategies: Our empirical results show that the

adversary does not have to be sophisticated in order to

significantly disrupt the network. This highlights the

need to think critically about defense strategies that can

counteract network disruption. For instance, is it possi-

ble to tackle network disruption by modifying the net-

work itself (e.g., by carefully suggesting new edges to

add)?

Ultimately, we hope that considering an adversarial view-

point will better equip us to minimize the deleterious effects

of malicious actors.
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