
The Annals of Applied Probability
2021, Vol. 31, No. 6, 2772–2810
https://doi.org/10.1214/21-AAP1662
© Institute of Mathematical Statistics, 2021

RECONSTRUCTING TREES FROM TRACES

BY SAMI DAVIES1, MIKLÓS Z. RÁCZ2 AND CYRUS RASHTCHIAN3

1Department of Mathematics, University of Washington, daviess@uw.edu
2Princeton University, mracz@princeton.edu

3Department of Computer Science & Engineering, University of California, San Diego, crashtchian@eng.ucsd.edu

We study the problem of learning a node-labeled tree given indepen-
dent traces from an appropriately defined deletion channel. This problem,
tree trace reconstruction, generalizes string trace reconstruction, which corre-
sponds to the tree being a path. For many classes of trees, including complete
trees and spiders, we provide algorithms that reconstruct the labels using only
a polynomial number of traces. This exhibits a stark contrast to known results
on string trace reconstruction, which require exponentially many traces, and
where a central open problem is to determine whether a polynomial number
of traces suffice. Our techniques combine novel combinatorial and complex
analytic methods.

1. Introduction. Statistical reconstruction problems aim to recover unknown objects
given only noisy samples of the data. In the string trace reconstruction problem, there is an
unknown binary string, and we observe noisy samples of this string after it has gone through
a deletion channel. This deletion channel independently deletes each bit with constant prob-
ability q and concatenates the remaining bits. The channel preserves bit order, so we observe
a sampled subsequence known as a trace. The goal is to learn the original string with high
probability using as few traces as possible.

The string trace reconstruction problem (with insertions, substitutions, and deletions) di-
rectly appears in the problem of DNA data storage [9, 12, 17, 19, 35, 38, 39]. It is crucial
to minimize the sample complexity, as this directly impacts the cost of retrieving data stored
in synthetic DNA. Since there is an exponential gap between upper and lower bounds for
the string trace reconstruction problem, it is motivating to study variants. We introduce a
generalization of string trace reconstruction called tree trace reconstruction, where the goal
is to learn a node-labelled tree given traces from a deletion channel. From a technical point
of view, tree trace reconstruction may aid in understanding the interplay of combinatorial
and analytic approaches to reconstruction problems and can be a springboard for new ideas.
From an applications point of view, current research on DNA nanotechnology has demon-
strated that structures of DNA molecules can be constructed into trees and lattices. In fact,
recent research has shown how to distinguish different molecular topologies, such as spiders
with three arms, from line DNA using nanopores [24]. These results may open the door for
other tree structures and be useful for applications like DNA data storage.

Let X be a rooted tree with unknown binary labels on its n nonroot nodes. The goal of
tree trace reconstruction is to learn the labels of X with high probability, using the minimum
number of traces, knowing only q , the deletion model, and the structure of X.

We consider two deletion models. In both models, each nonroot node v in X is deleted
independently with constant probability q—the root is never deleted—and deletions are as-
sociative. The resulting tree is called a trace. We assume that X has a canonical ordering of

Received June 2019; revised August 2020.
MSC2020 subject classifications. Primary 60C05, 68Q32; secondary 30C80.
Key words and phrases. Trace reconstruction, tree trace reconstruction, deletion channel, Littlewood polyno-

mials.

2772

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/21-AAP1662
http://www.imstat.org
mailto:daviess@uw.edu
mailto:mracz@princeton.edu
mailto:crashtchian@eng.ucsd.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

RECONSTRUCTING TREES FROM TRACES 2773

FIG. 1. Deletion models. Gray nodes deleted from original tree (a). Resulting trace in the TED Model (b) and
the Left-Propagation Model (c).

its nodes, and the children of a node have a left-to-right ordering. For the left-propagation
model, we define the left-only path starting at v as the path that recursively goes from parent
to left-most child.

• Tree edit distance (TED) model: When v is deleted, all children of v become children of
v’s parent. Equivalently, contract the edge between v and its parent, retaining the parent’s
label. The children of v take v’s place as a continuous subsequence in the left-to-right
order.

• Left-propagation model: When v is deleted, recursively replace every node (together with
its label) in the left-only path starting at v with its child in the path. This results in the
deletion of the last node of the left-only path, with the remaining tree structure unchanged.1

Figure 1 depicts traces in both deletion models for a given original tree and set of deleted
nodes. When X is a path or a star, then both models coincide with the string deletion channel.
After posting this paper to arXiv, subsequent work has shown that these are the most difficult
trees to reconstruct in terms of sample complexity [30]. In other words, the sample complexity
to reconstruct an arbitrarily labelled tree on n nodes is no more than the sample complexity
to reconstruct an arbitrarily labelled string on n bits.

A key motivation for the tree edit distance model is that deletions in the TED model
correspond exactly to the deletion operation in tree edit distance, which is a well-studied
metric for pairs of labeled trees used in applications [7, 40]. Our main motivation for the
left-propagation model is more theoretical: it preserves different structural properties—for
instance, a node’s number of children does not increase (see Figure 1)—and poses different
challenges than the TED model.

1.1. Related work.

Previous results on string trace reconstruction. Introduced by Batu, Kannan, Khanna,
and McGregor [6], string trace reconstruction has received a lot of attention, especially re-
cently [10, 14, 15, 20–23, 31, 34, 37]. Yet there is still an exponential gap between the known
upper and lower bounds for the number of traces needed to reconstruct an arbitrary string
with high probability and constant deletion probability: it is known that exp(O(n1/3)) traces
are sufficient [14, 15, 34] and �̃(n3/2) traces are necessary [10, 21]. Determining whether a
polynomial number of traces suffice is a challenging open problem in the area. A well-studied
variant is reconstructing a string with random, average-case labels, instead of arbitrary, worst-
case labels [6, 22]. This is relevant for applications to DNA data storage [35].

1Since the BFS order on X is arbitrary (but fixed), the choice of using the left-only path (as opposed to, say, the
right-only one) does not a priori bias certain nodes.

2774 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

In a few of our algorithms, we will reduce various subproblems to the string trace recon-
struction problem, and hence, we will use existing results as a black box. For future reference,
we precisely state the previous results now. Let T (n, δ) and T̂ (n, δ) denote the minimum
number of traces needed to reconstruct an n-bit worst-case and average-case string, respec-
tively, with probability at least 1 − δ, where the dependence on the deletion probability q is
left implicit.

THEOREM 1.1 ([14, 15, 34]). The number of traces T (n, δ) needed to reconstruct a
worst-case n-bit string with probability 1 − δ satisfies T (n, δ) ≤ ln(1

δ
) · eCn1/3

, for C depend-
ing on q .

THEOREM 1.2 ([22]). The number of traces T̂ (n, δ) needed to reconstruct a random n-
bit string with probability 1 − δ satisfies T̂ (n, δ) ≤ ln(1

δ
) · eC log1/3(n), for C depending on q .

In terms of lower bounds, it is known that T (n, δ) = �̃(n1.5) and T̂ (n, δ) = �̃(log5/2(n)),
for any δ bounded away from one [10, 21]. The proofs of Theorem 1.1 rely on a mean-based
algorithm, one only using the mean of single bits from traces, and the bound is optimal for
mean-based algorithms [14, 15, 34].

Other variants of trace reconstruction. Due to the exponential gap between upper and
lower bounds in the string trace reconstruction problem, an array of variants have been stud-
ied recently. Cheraghchi, Gabrys, Milenkovic, and Ribeiro introduce the study of coded trace
reconstruction, where the goal is to design efficiently encodable codes whose codewords can
be efficiently reconstructed with high probability [11]. Krishnamurthy, Mazumdar, McGre-
gor, and Pal study trace reconstruction on matrices, where rows and columns of a matrix
are deleted and a trace is the resulting submatrix. They also study string trace reconstruction
on sparse strings [27]. Ancestral state reconstruction is a generalization of string trace re-
construction, where traces are no longer independent, but instead evolve based on a Markov
chain [4].

There is also a deterministic version of string trace reconstruction [29]. Let the k-deck of
a string be the multiset of its length k subsequences. The question is to establish how large k

must be to uniquely determine an arbitrary string of n bits. Currently, the best known bounds
stand at k = O(

√
n) and k = exp(�(

√
logn)), due respectively to Krasikov and Roditty [26]

and Dudík and Schulman [16]. This result has also been used to study population recovery,
the problem of learning an unknown distribution of bit strings given noisy samples from the
distribution [5].

The term trace complexity has appeared in a network inference context, but the models and
definition of a trace are incomparable to ours [1]. Other results on deletion channels appear
in the survey by Mitzenmacher [32].

Other graph reconstruction models. While we are unaware of previous work on recon-
structing trees using traces (besides strings), a large variety of other graph-centric reconstruc-
tion problems have been considered.

The famous reconstruction conjecture, due to Kelly [25] and Ulam [36], posits that every
graph G is uniquely determined by its deck, where the deck of G is the multiset of subgraphs
obtained by deleting a single vertex from G. Here, the (sub)graphs are unlabeled, and the goal
is to determine G up to isomorphism. The reconstruction conjecture remains open, although
it is known for special cases, such as trees and regular graphs [25, 28].

Mossel and Ross introduced and studied the shotgun assembly problem on graphs, where
they use small vertex-neighborhoods to uniquely identify an unknown graph [33].

RECONSTRUCTING TREES FROM TRACES 2775

1.2. Our results. We provide algorithms for two main classes of trees: complete k-ary
trees and spiders. In a complete k-ary tree, every nonleaf node has exactly k children, and
all leaves have the same depth. An (n, d)-spider consists of n/d paths of d + 1 nodes, all
starting from the same root. Figure 11 depicts an example spider, and it demonstrates that both
deletion models lead to the same trace for spiders. We focus on these two classes because of
their varying amount of structure. Spiders behave like a union of disjoint paths, except when
some paths have all of their nodes deleted. This allows us to extend methods from string trace
reconstruction, with a slightly more complicated analysis. On the other hand, complete k-ary
trees are so structured that we can use more combinatorial algorithms, which have proven
less successful for string trace reconstruction so far. We believe our methods could be used
to prove results for larger classes of trees, as well.

In what follows, we use with high probability to mean with probability at least 1−O(1/n).
Also, we let [t] for t ∈ N denote the set {1,2, . . . , t}.

1.2.1. TED model for complete k-ary trees. Let X be a rooted complete k-ary tree along
with unknown binary labels on its n nonroot nodes. Since k = 1 and k = n are identical to
string trace reconstruction, we focus on 1 < k < n. We provide two algorithms to recon-
struct X, depending on whether the degree k is large or small.

We state our theorems in terms of T (k, δ), since our reductions use algorithms for string
trace reconstruction as a black box and the current bounds on T (k, δ) may improve in the
future.

THEOREM 1.3. In the TED model, there exist c, c′ > 0 depending only on q such that
if k ≥ c log2(n), then it is possible to reconstruct a complete k-ary tree on n nodes with
exp(c′ · logk n) · T (k,1/n2) traces with high probability.

Theorem 1.1 implies that T (k,1/n2) = exp(O(k1/3)) if k ≥ c log2(n), so the trace com-
plexity in Theorem 1.3 is currently exp(O(logk(n) + k1/3)). This is poly(n) as long as
k = O(log3 n).

THEOREM 1.4. In the TED model, there exists C > 0 depending only on q such that
exp(Ck logk n) traces suffice to reconstruct a complete k-ary tree on n nodes with high prob-
ability.

In particular, when k is a constant, then the trace complexity of Theorem 1.4 is poly(n).
Theorem 1.4 makes no restrictions on k, but uses more traces than Theorem 1.3 for k ≥
c log2 n. It would be desirable to smooth out the dependence on k between our two theorems.
In particular, we leave it as an intriguing open question to determine whether poly(n) traces
suffice for all k ≤ log3(n).

1.2.2. Left-propagation model for complete k-ary trees. We provide two reconstruction
algorithms for k-ary trees in the left-propagation model, leading to the following two theo-
rems.

THEOREM 1.5. In the left-propagation model, there exists c > 0 depending only on q

such that if k ≥ c logn, then T (d + k,1/n2) traces suffice to reconstruct a complete k-ary
tree of depth d = O(logk n) with high probability.

When k ≥ c logn, then d + k = O(k), and we can reconstruct an n-node complete k-ary
tree with exp(O(k1/3)) traces by using Theorem 1.1.

We also provide an alternate algorithm that makes no assumptions on k.

2776 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

THEOREM 1.6. In the left-propagation model, O(nγ logn) traces suffice to reconstruct
an n-node complete k-ary tree with high probability, where γ = ln(1

1−q
)(c′k

lnn
+ 1

lnk
), for a

constant c′ > 1.

Theorem 1.6 implies that poly(n) traces suffice to reconstruct a k-ary tree whenever k =
O(logn) and q is a constant. Moreover, for small enough q and k, the algorithm needs only a
sublinear number of traces (e.g., binary trees with q < 1/2−ε). From Theorem 1.1, the bound
in Theorem 1.6 can be more simply thought of as exp(C ′ · (d + k)); and, in Theorem 1.5 as
exp(C · (d + k)1/3).

1.2.3. Spiders. Recall that the TED and left-propagation deletion models are the same
for spiders. We provide two reconstruction algorithms, depending on whether the depth d is
large or small.

THEOREM 1.7. Assume that d ≤ log1/q n. For q < 0.7, there exists C > 0 depending

only on q such that exp(C · d(nqd)1/3) traces suffice to reconstruct an (n, d)-spider with
high probability.

To understand the statement of this theorem, consider d = c log1/q n with c < 1. A black-
box reduction to the string case results in using exp(�̃(n1−c)) traces for reconstruction (see
Section 5.4), whereas Theorem 1.7 improves this to exp(Õ(n(1−c)/3)).

Theorem 1.7 actually extends to any deletion probability q < 1/
√

2 ≈ 0.707, but this re-
quires taking d to be larger than some constant depending on q . We discuss further in Re-
mark 3 why the regime of q > 1/

√
2 is difficult to handle. Our approach extends previous

results based on complex analysis [14, 15, 34]. As the main technical ingredient, we prove
new bounds on certain polynomials whose coefficients are small in modulus. In particular,
we analyze a generating function that might be of independent interest, related to Littlewood
polynomials.

For large depth d ≥ log1/q n, full paths of the spider are unlikely to be completely deleted,
and we derive the following result via a reduction to string trace reconstruction.

PROPOSITION 1.8. For q < 1 and all n large enough, an (n, d)-spider with d ≥ log1/q n

can be reconstructed with 2 · T (d, 1
2n2) traces with high probability.

Using Theorem 1.1, the current bound for Proposition 1.8 is 2 ·T (d, 1
2n2) ≤ exp(O(d1/3)).

Comparing Theorem 1.7 and Proposition 1.8, we see that the bounds in the exponent are
d(nqd)1/3 and d1/3, for d ≤ log1/q n and d ≥ log1/q n, respectively. We leave it as an open
question to unify these bounds, and in particular, to determine whether the jump is necessary
as d crosses log1/q n.

1.2.4. Average-case labels for trees. Our results have focused on trees with worst-
case, arbitrary labels. Assuming the binary labels are uniformly distributed independent
bits leads to significantly improved bounds. For the string case, Theorem 1.2 implies that
T̂ (k,1/n2) = exp(O(log1/3 k+ log logn)) traces suffice to reconstruct a random binary string
with high probability. For three of our results, we can use this as a black box and replace
the dependence on T (k,1/n2) with T̂ (k,1/n2) for average-case labeled trees. The average-
case trace complexity for k-ary trees under the TED model—analogously to Theorem 1.3—
becomes exp(O(logk(n) + log1/3 k)) when k ≥ c log2(n). For the left-propagation model—
analogously to Theorem 1.5—the average-case trace complexity becomes exp(O(log1/3 k +

RECONSTRUCTING TREES FROM TRACES 2777

log logn)) when k ≥ c logn. For (n, d)-spiders with depth d ≥ log1/q n—analogously to

Proposition 1.8—the average-case trace complexity becomes exp(O(log1/3 d + log logn)).
Since it is straightforward to use the average-case string result instead of the worst-case re-
sult to obtain the results just described, we restrict our exposition to worst-case labeled k-ary
trees and spiders.

1.3. Overview of TED deletion algorithms. Previous work on string trace reconstruction
mostly utilizes two classes of algorithms: mean-based methods, which use single-bit statistics
for each position in the trace, and alignment-based methods, which attempt to reposition
subsequences in the traces to their true positions.

Although mean-based algorithms are currently quantitatively better for string reconstruc-
tion, they seem difficult to extend to k-ary trees under the TED deletion model. Specifically,
mean-based methods require a precise understanding of how the bit in position j ′ of the orig-
inal tree affects the bit in position j of the trace. For strings, there is a global ordering of
the nodes which enables this. Unfortunately, for k-ary trees with k /∈ {1, n} under the TED
model, nodes may shift to a variety of locations, making it unclear how to characterize bit-
wise statistics. To circumvent this challenge, we provide two new algorithms, depending on
whether or not the degree k is large (k ≥ c log2(n)). The main idea is to partition the orig-
inal tree into small subtrees and learn their labels using a number of traces parameterized
primarily by k and logk n, which can be much smaller than n.

When k is large enough, we will be able to localize root-to-leaf paths, in the sense that we
can identify the location of their nonleaf nodes in the original tree with high probability. By
covering the internal nodes of the tree by such paths, we will directly learn the labels for all
nonleaf nodes. Then, we observe that the leaves can be naturally partitioned into stars of size
k, and we can learn their labels by reducing to string trace reconstruction (for strings on k

bits). Any improvement to string trace reconstruction will lead to a direct improvement for
k-ary trees with large degree.

When k is small, our localization method fails, and we resort to looking at traces which
contain even more structure (which requires more traces). We decompose the entire tree into
certain subtrees and recover their labels separately. We define a property which is easily
detectable among traces and show that when this property holds, we can extract labels for the
subtrees that are correct with probability at least 2/3. Then, we take a majority vote to get the
correct labels with high probability.

1.4. Overview of left-propagation algorithms. As with the TED model, we combine
mean-based and alignment-based strategies, and we provide different algorithms depending
on whether the degree is large or small. The two algorithms differ in how they align certain
subtrees of traces to positions in the tree.

When k is large enough (k ≥ c logn for a constant c > 0), our first algorithm will use
results from string trace reconstruction as a black box. The key idea is that certain subtrees
will behave as if they were strings on O(k) bits in the string deletion model. Although this
does not happen in all traces, we show that it occurs with high probability. Overall, we parti-
tion X into such subtrees, and we reduce to string reconstruction results to recover the labels
separately.

On the other hand, when k is small (such as binary trees with k = 2), we do not know how
to reduce to string reconstruction. Instead, our second algorithm waits until a larger subtree
survives in a trace. We show that this makes the alignment essentially trivial, and we can
directly recover the labels for certain subtrees. Quantitatively, the trace complexity of the
first algorithm is better, but the reconstruction only succeeds for large enough k.

2778 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

1.5. Overview of spider techniques. When the paths of a spider are sufficiently long—
specifically, if they have depth d ≥ log1/q n—then with probability close to 1, no path is fully
deleted in a given trace. This allows us to trivially match paths of the trace spider to paths of
the original spider and then use string trace reconstruction algorithms on the individual paths,
leading to Proposition 1.8.

When the paths of a spider are shorter (d < log1/q n), many traces have paths fully deleted.
As illustrated in Figure 11, when paths are fully deleted from a spider, it is unclear which
paths were deleted, which forces us to align paths from different traces. We bypass direct
alignment-based methods and instead use a mean-based algorithm that generalizes the meth-
ods introduced in the proof of Theorem 1.1 by [14, 15, 34]. The main difficulty we address is
that, in contrast to strings which are one-dimensional, spiders are two-dimensional: one di-
mension representing which path in the spider a node is in, and the other representing where
in a path a node is.

1.6. Outline. The rest of the paper is organized as follows. Preliminaries are in Section 2.
The proofs of Theorem 1.3 and Theorem 1.4 for k-ary trees under the TED model appear
in Section 3. The proofs of Theorem 1.5 and Theorem 1.6 for the Left-Propagation model
appear in Section 4. The spider reconstruction preliminaries and algorithms for Theorem 1.7
and Proposition 1.8 are in Section 5. The three main sections can be read independently, after
their preliminaries. We conclude in Section 6.

2. Preliminaries. In what follows, X denotes the (known) underlying tree, along with
the (unknown) binary labels on its n nonroot nodes.

Standard tree definitions. We say that X is rooted if it has a fixed root node. We assume
the root is never deleted (for further explanation see Remark 4). An ancestor (resp. descen-
dant) of a node v is a node reachable from v by proceeding repeatedly from child to parent
(resp. parent to child). We say v is a leaf if it has no children, and otherwise v is an internal
node. The length of a path equals the number of nodes in it. The depth of v is the number of
edges in the path from the root to v. The height of v is the number of edges in the longest
path between v and a leaf. The depth of a rooted tree is the height of the root. We say that X

is a complete k-ary tree of depth d if every internal node has k children and all leaves have
depth d .

2.1. k-ary tree algorithm preliminaries. Let X be a rooted complete k-ary tree with depth
d . We index the nonroot nodes according to the BFS order on X (the root is not indexed; the
children of the root are {0,1, . . . , k − 1}, etc.). We identify nodes of X with their index. For
t ∈ [d], let Jt be the nodes at depth t . Define I1 := J1 = {0,1, . . . , k − 1}, and for t ≥ 2,

It := {i ∈ Jt | i mod k �= 0}.
In words, for t ≥ 2, It is the set of nodes at depth t which are not left-most among their
siblings. Define also I := ⋃d−1

t=1 It .
We define three unlabeled subtrees of X. Let PX(i) be the path from the root to i in X.

Define HX(i) as the union of the left-only path starting at i, descending to a leaf �, and the
k − 1 siblings of �. Finally, define GX(i) := PX(i) ∪ HX(i). See Figure 2 for an example of
these subtrees. For clarity, we note that if i has depth t in X (i.e., i ∈ Jt), then |PX(i)| = t +1
and |HX(i)| = d − t + k and |GX(i)| = d + k.

RECONSTRUCTING TREES FROM TRACES 2779

FIG. 2. Canonical subtrees for k-ary trees, in the original tree (left) and trace (right).

Canonical subtrees of traces. We also consider certain subtrees of a trace Y . They will be
analogous to PX(i),HX(i), and GX(i), and they only depend on the position of i in X. We
will denote them as PY (i),HY (i), and GY (i). Intuitively, they are subtrees in Y obtained by
looking at nodes that should be in the same position as the corresponding ones in X. However,
the node i does not necessarily belong to these subtrees (e.g., it may have been deleted in Y ,
or another node may be in its place). In what follows, we refer to subtrees as sequences of
nodes in the BFS order, since the edge structure will be clear from context (i.e., the subtree is
the induced subgraph on the relevant nodes).

We now formally define PY (i),HY (i), and GY (i), which are also depicted in Figure 2.
Fix i, and let u0, u1, . . . , ud−1 be the internal nodes in GX(i), where ut has depth t ,
and let ud, . . . , ud+k−1 be the leaf nodes, ordered left-to-right in the BFS order. Define
πi : {0,1, . . . , d − 1} → {0,1, . . . , k − 1} so that πi(t) is the position of ut+1 in X among
its siblings (the children of its parent ut). Note that πi is independent of the labels of X. Let
ti be the depth of i in X. We define PY (i) as the path v0, v1, . . . , vti in Y obtained from the
following process. Set v0 to be the root. Then, for t ∈ [ti], let vt be the node at depth t in Y

that is in position πi(t −1) among the k children of vt−1, where we abort and set PY (i) =⊥ if
vt−1 does not have exactly k children. Similarly, let GY (i) be the subtree v0, v1, . . . , vd+k−1,
where vt is defined as follows. Set v0 to be the root in Y . Then, for t ∈ [d − 1], let vt be the
node at depth t in Y that is in position πi(t −1) among the k children of vt−1, where we abort
and set GY (i) =⊥ if vt−1 does not have exactly k children. Finally, set vd, . . . , vd+k−1 to be
the k children of vd−1, and again we set GY (i) =⊥ if vd−1 does not have precisely k children.
If GY (i) �=⊥, then set HY (i) = vti , . . . , vd+k−1, and otherwise, set HY (i) =⊥. Observe that
if GY (i) �=⊥, then we have GY (i) = PY (i) ∪ HY (i).

We remark that GY (i),HY (i), and PY (i) depend only on πi and the tree structure of Y ,
and therefore they do not use any label information from X. We also note that whether these
subtrees are set to ⊥ will be significant, since this implies certain structural properties of
traces. If all nodes in GX(i) survive in a trace Y , then we say that Y contains GX(i). We
write GY (i) = GX(i) if the nodes in these subtrees are exactly the same (by construction, the
edges will also be the same). We conclude this section with two remarks that are useful for
reconstruction of X.

REMARK 1. If GY (i) = GX(i), then we can reconstruct the labels of GX(i) bit by bit by
copying the label to be that from the corresponding bit in GY (i). The same applies for HX(i)

and PX(i).

REMARK 2. To reconstruct labels of X, one can reconstruct labels of subtrees of X,
where the subtrees cover all nodes of X.

3. Reconstructing trees, TED deletion model. In this section we prove our two results
for k-ary trees in the TED model.

2780 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

3.1. Proof of Theorem 1.3 concerning large degree trees. Our algorithm utilizes a struc-
ture that occurs when k ≥ c log2(n). Recall that for a node i in X, we think of i’s children as
being ordered consecutively, left-to-right, based on the BFS ordering of X.

DEFINITION 3.1. Let Y be a trace of a tree X. We say that Y is b-balanced if, for every
internal node i in X, at most b consecutive children of i have been deleted in Y .

CLAIM 1. If X has n nodes, then a trace Y is b-balanced with probability at least 1 −
nqb.

PROOF. Any set of b consecutive nodes is deleted with probability qb. Since there are at
most n starting nodes for a run of b nodes, a union bound proves the claim. �

Since T (k,1/n2) = exp(O(k1/3)) by Theorem 1.1, the number of traces used in The-
orem 1.3 is exp(O(logk(n) + k1/3)). Therefore, setting b := 10

√
k/ log(1/q) = �(logn),

Claim 1 and a union bound show that with high probability all traces will be b-balanced. As
we shall see, the benefit of this balanced structure manifests itself in the proof of correctness
of the reconstruction algorithm used for Theorem 1.3.

Our reconstruction algorithm that proves Theorem 1.3 consists of two main steps:

1. (Finding paths and grouping traces). First, we process all the traces and group them into
different sets (which may overlap). This grouping of traces is based on finding root-to-leaf
paths that are preserved in a trace and estimating where these paths came from in X. We term
this latter algorithm the FINDPATHS algorithm; see Algorithm 1 below for its pseudocode.

2. (Reconstruction). We then analyze each subset of traces. Each of these leads to recon-
structing the labels for a particular subset of X, consisting of a path from the root to a node
at depth d − 1, together with the k children of this node. Finally, we output the union of all
such labels as the estimated labels of X. In other words, we cover X with the collection of
subtrees {GX(j) : j ∈ Jd−1} and estimate the labels of each GX(j) separately. Algorithm 2
below states, in pseudocode, the full reconstruction algorithm, which calls Algorithm 1 as a
subroutine.

The FINDPATHS algorithm. We start by describing the FINDPATHS algorithm (see Algo-
rithm 1). The input to this algorithm is a trace Y , while the output of the algorithm will be a
subset of Jd−1, the nodes of X at depth d − 1; the conceptual meaning of this subset will be
clear once the algorithm is described. We recall that we index the nonroot nodes according to
the BFS order on X, and we will interchangeably refer to nodes and their BFS index.

The first part of the FINDPATHS algorithm is to identify root-to-leaf paths that have been
preserved (i.e., no vertex in the path has been deleted) in the trace Y . This is straightforward,
since if a root-to-leaf path in X is preserved, then the corresponding leaf has depth d in Y ;
and vice versa, every leaf in Y that has depth d corresponds to a root-to-leaf path in X that
was preserved. Once all surviving root-to-leaf paths have been identified, we collect in the
set S all the nodes of Y that are on a surviving root-to-leaf path and have depth d − 1 (see
lines 1–6 of Algorithm 1).

We know that each node v ∈ S must have come from a node w ∈ Jd−1 (i.e., a node in X of
depth d − 1). The second and final part of the FINDPATHS algorithm consists of estimating,
for each node v ∈ S , which original node w ∈ Jd−1 it came from; this estimate is denoted by
ŵ. Note that the left-to-right ordering of the nodes in S and the original nodes in Jd−1 which

RECONSTRUCTING TREES FROM TRACES 2781

Algorithm 1 FINDPATHS in k-ary trees, TED deletion model
Input: a trace Y sampled from the TED deletion channel.

1: Initialize S = ∅.
2: for v a leaf in Y do
3: if v has depth d in Y then
4: Add the parent of v to S .
5: end if
6: end for
7: Initialize Ŝ = ∅.
8: for v ∈ S do
9: for � = 0 to d − 2 do

10: Compute â� based on node-to-leaf anchor paths and combining plug-in estimators
(see equation (3) for the final formula, the text for further details, and Figure 3 for an
illustration).

11: end for
12: Set ŵ := âd−2âd−3 · · · â0 (written in base-k expansion).
13: Add ŵ to Ŝ .
14: end for
15: Output: Ŝ .

they come from are the same, so the algorithm needs only to output the set Ŝ := {ŵ : v ∈ S}
(since the mapping between S and Ŝ follows the left-to-right ordering).2

Given v ∈ S , to compute the estimate ŵ, we first observe that any node w ∈ Jd−1 can be
written in its base-k expansion,

w = ad−2ad−3 · · ·a0,

where a� ∈ {0,1, . . . , k − 1} for � ∈ {0,1, . . . , d − 2}. Thus in order to compute an estimate
ŵ, it suffices to compute an estimate â� of a� for every � ∈ {0,1, . . . , d − 2} and then set

ŵ := âd−2âd−3 · · · â0.

The following is an equivalent and more pictorial way of thinking about this observation. Let
u0, u1, . . . , ud−1 denote the nodes in X on the path from the root to w ∈ Jd−1, with ut having
depth t (in particular, u0 is the root and ud−1 = w). Then, for � ∈ {0,1, . . . , d − 2}, the quan-
tity a� is the position (from the left, with indexing starting at 0) of ud−1−� among the k chil-
dren of ud−2−�. Now suppose that v ∈ S came from node w ∈ Jd−1, and let u′

0, u
′
1, . . . , u

′
d−1

denote the nodes in Y on the path from the root to v, with u′
t having depth t (in particular,

u′
0 is the root and u′

d−1 = v). Thus estimating a0, a1, . . . , ad−2 corresponds to estimating, for
each node u′

t , where its pre-image in X ranks in the left-to-right ordering of itself and its
k − 1 siblings.

We now explain how to compute the estimate â0 given v ∈ S ; computing â� for general
� is similar but involves slightly more notation, so we defer this for now. Let z0, z1, . . . , zm

denote v and its siblings in Y , ordered from left to right, and let Z := {z0, z1, . . . , zm}. Let
z∗

0, z
∗
1, . . . , z

∗
k′ denote the nodes among Z that have a child in Y , ordered from left to right,

and let Z∗ := {z∗
0, z

∗
1, . . . , z

∗
k′ }. Note that v ∈ Z∗ by definition; define k∗ to be the index such

that v = z∗
k∗ . Also, by construction, the pre-images of all nodes in Z∗ were siblings in X, so

we must have that k′ ≤ k − 1. Note that there are two ways that a node can be in Z \Z∗:

2Regarding notation: note that Ŝ is not an estimate of S , but rather an estimate of the pre-image of S before
X is passed through the deletion channel to obtain Y . We hope that the reader accepts this abuse of notational
convention.

2782 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

• A sibling w′ of w in X is not deleted in Y , but all of the children of w′ are deleted in Y .
Then the image of w′ in Y is in Z \Z∗. Note that this is a highly unlikely event, since k is
large.

• A sibling w′ of w in X is deleted in Y , but not all of the children of w′ are deleted in Y .
Then the images of the nondeleted children of w′ in Y are in Z \ Z∗. Note that if such a
vertex w′ is deleted, then in expectation there will be (1 − q)k nondeleted children.

Since the first bullet point above is highly unlikely and the second bullet point describes the
typical behavior of a trace, this motivates the following estimation procedure. For i ∈ [k′], let
αi denote the number of nodes in Z that are between z∗

i−1 and z∗
i ; furthermore, let α0 denote

the number of nodes in Z that are before z∗
0. Now for every i ∈ {0,1, . . . , k′} let α̂i denote the

unique integer satisfying

α̂i − 1/2 ≤ αi

(1 − q)k
< α̂i + 1/2.

Finally, we set

(1) â0 := k∗ +
k∗∑

i=0

α̂i .

(If this results in an estimate that is greater than k − 1, then instead set â0 := k − 1.)
Now we turn to estimating â� for general � ∈ {0,1, . . . , d − 2}, given v ∈ S. Recall that

u′
0, u

′
1, . . . , u

′
d−1 denote the nodes in Y on the path from the root to v, with u′

t having depth
t . Let z0, z1, . . . , zm denote u′

d−1−� and its siblings in Y , ordered from left to right, and
let Z := {z0, z1, . . . , zm} (we reuse notation from above). Let z∗

0, z
∗
1, . . . , z

∗
k′ denote the nodes

among Z that have height �+1 in Y , ordered from left to right, and let Z∗ := {z∗
0, z

∗
1, . . . , z

∗
k′ }.

Note that u′
d−1−� ∈Z∗ by definition; define k∗ to be the index such that u′

d−1−� = z∗
k∗ . Also,

by construction, the pre-images of all nodes in Z∗ were siblings in X, so we must have
that k′ ≤ k − 1. For i ∈ [k′], let αi denote the number of nodes in Y that are either (a) in
Z between z∗

i−1 and z∗
i , or (b) are descendants in Y of such a node; see Figure 3 for an

illustration. Furthermore, let α0 denote the number of nodes in Y that are either (a) in Z
before z∗

0, or (b) are descendants in Y of such a node. Now for every i ∈ {0,1, . . . , k′} let α̂i

denote the unique integer satisfying

(2) α̂i − 1/2 ≤ αi

(1 − q)
∑�+1

h=1 kh
< α̂i + 1/2.

Finally, we again set

(3) â� := k∗ +
k∗∑

i=0

α̂i .

The estimate in equation (3) is thus a generalization of the special case of â0 in equation (1).
(If this results in an estimate that is greater than k − 1, then instead set â� := k − 1.)

This fully completes the description of the FINDPATHS algorithm. In the following lemma
we analyze the performance of the FINDPATHS algorithm and show that its output is correct
with high probability.

LEMMA 3.2. There exist constants c and c′, that depend only on q , such that the fol-
lowing holds. Let k ≥ c log2(n), let X be a k-ary tree with arbitrary binary labels, and let
Y be a trace sampled from the TED deletion channel. The FINDPATHS algorithm is fully
successful—that is, for all nodes v ∈ S , the estimate ŵ is correct—with probability at least
1 − exp(−c′√k).

RECONSTRUCTING TREES FROM TRACES 2783

FIG. 3. Path estimation in k-ary trees. We estimate, level by level, the pre-image of each root-to-leaf path in
a trace. At each level, we estimate the number of nodes deleted at that level using the number of nodes in the
(light blue) trapezoids in the figure (this uses that k is large enough to apply concentration bounds). This then
allows us to determine the positions of the surviving (dark blue) nodes, which have paths to a leaf (e.g., positions
0 _ 2 _ _ 5 _ above).

PROOF. Throughout this proof we denote the complement of an event E by Ec. Set b :=
10

√
k/ log(1/q) = �(logn) and let Bb denote the event that Y is b-balanced. By Claim 1 we

have that

(4) P
(
Bc

b

) ≤ exp
(−C′√k

)
for some constant C′.

Let u be an internal node of X and let hu be the height of u. Since u is an internal node,
we have that 1 ≤ hu ≤ d . The number of descendants of u in X is

∑hu

�=1 k�. Let Ru denote
the number of descendants of u in X that survive in Y .

Now fix m ≤ b and let u1, . . . , um denote m consecutive siblings in X with height h ∈ [d].
Let Eu1,...,um denote the event that∣∣∣∣∣

m∑
i=1

Rui
− m(1 − q)

h∑
�=1

k�

∣∣∣∣∣ ≤ 1

3
(1 − q)

h∑
�=1

k�.

By a standard Chernoff bound we have that there exist constants c′′, c′′′ > 0 such that

(5) P
(
Ec

u1,...,um

) ≤ exp

(
−c′′(1 − q)

h∑
�=1

k�/m

)
≤ exp

(−c′′(1 − q)k/m
) ≤ exp

(−c′′′√k
)
,

where in the last inequality we used that m ≤ b = 10
√

k/ log(1/q).
Finally, define the event

E := Bb ∩
b⋂

m=1

⋂
u1,...,um

Eu1,...,um,

where the intersection is over all possible m consecutive siblings u1, . . . , um in X. Putting
together equation (4), equation (5), and a union bound, we have that

P
(
Ec) ≤ exp

(−c′√k
)

for some constant c′. On the other hand, on the event E , the estimates α̂i in equation (2)
are correct for all v ∈ S , all � ∈ {0,1, . . . , d − 2}, and all i ∈ {0,1, . . . , k′}. This implies that
for every v ∈ S and every � ∈ {0,1, . . . , d − 2}, the estimate â� in equation (3) is correct.
Therefore for every v ∈ S the estimate ŵ is also correct. �

2784 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

Algorithm 2 Reconstructing k-ary trees, k ≥ c log2(n), TED deletion model

Set T = exp(c′ logk(n)) · T (k,1/n2) (for a large enough constant c′).
Input: traces Y1, . . . , YT sampled independently from the TED deletion channel.

1: for j ∈ Jd−1 do
2: Initialize Aj =∅.
3: end for
4: for t = 1 to T do
5: Run Algorithm 1 with input Yt ; let Ŝt denote the output.
6: for j ∈ Ŝt do
7: Add Yt to Aj .
8: end for
9: end for

10: for j ∈ Jd−1 do estimate the labels of GX(j) as follows:
11: if Aj = ∅ then � This happens with vanishing probability.
12: Terminate the algorithm and produce no output.
13: end if

To estimate the labels of PX(j):
14: Choose an arbitrary trace Y ∈ Aj ;
15: Let v denote the node in Y which caused Y to be included in Aj ;
16: Estimate labels of PX(j) by copying bits from the path in Y that goes from the root

to v.
To estimate the labels of the children of j :

17: Initialize T = ∅.
18: for Y ∈ Aj do
19: Let v denote the node in Y which caused Y to be included in Aj ;
20: Form a string Z by reading, from left to right, the bits of the children of v in Y ;
21: Add Z to T .
22: end for
23: Use a string trace reconstruction algorithm to estimate the labels of the children of j

from T .
24: end for
25: Output: Take a union, over all j ∈ Jd−1, of the estimated labels of GX(j), to estimate

the labels of X (as in Remark 2).

The reconstruction algorithm: Estimating the labels of GX(j) for each j ∈ Jd−1. Now
that we have described and analyzed the FINDPATHS algorithm (Algorithm 1), we turn our
attention to the full reconstruction algorithm (see Algorithm 2).

Lines 1–9 of Algorithm 2 describe the first step of the reconstruction algorithm, where we
process all the traces and group them into different sets. Formally, we define a set Aj for
every j ∈ Jd−1, which we initialize with Aj = ∅. Then for every trace Yt in our input, we
run Algorithm 1 with input Yt , and we let Ŝt denote the output. We then add Yt to Aj for
every j ∈ Ŝt .

We now turn to the main step of the reconstruction algorithm, which is described in lines
10–25 of Algorithm 2. For every j ∈ Jd−1, we use the traces in Aj to estimate the labels
of GX(j), and finally we take a union of these estimates to estimate the labels of X. The
estimation of the labels of GX(j) is done in two parts: (1) the estimation of the labels of
PX(j), and (2) the estimation of the labels of the children of j ; see Figure 4 for an illustration.

To estimate the labels of PX(j), we take an arbitrary trace Y ∈ Aj ; if Aj =∅, then the al-
gorithm terminates without output. Let v denote the node in Y which caused Y to be included

RECONSTRUCTING TREES FROM TRACES 2785

FIG. 4. An example set of traces Aj appearing in Algorithm 2. The two salient points are that, with high
probability: (1) the bits on the highlighted paths are all the same as the original bits in PX(j), and (2) the
restriction to leaves corresponds to string trace reconstruction.

in Aj . Assuming that Y was included in Aj for the correct reason, that is, the pre-image of v

is indeed j , then the labels of PX(j) are identical to the bits on the path in Y that goes from
the root to v; see Figure 4 for an illustration. Therefore we estimate the labels of PX(j) by
copying the bits from the path in Y that goes from the root to v.

Finally, we estimate the labels of the children of j ; it turns out that this reduces to string
trace reconstruction. Given a trace Y ∈ Aj , let v denote the node in Y which caused Y to be
included in Aj . Assuming that Y was included in Aj for the correct reason, that is, the pre-
image of v is indeed j , then the children of v in Y are a random subset of the children of j in
X; see Figure 4 for an illustration. Thus if we restrict our attention to the bits on the children
of j in X, the children of v in the trace Y are as if the original bits were passed through
the string deletion channel; see Figure 4 again for an illustration. This motivates collecting a
string trace from each Y ∈ Aj , by looking at the children of the appropriate vertex v; we let T
denote this collection of string traces. Finally, we use a string trace reconstruction algorithm
to reconstruct the bits on the children of j in X from T .

Now that we have fully described the reconstruction algorithm, we are ready to prove that
it correctly reconstructs the labels of X with high probability. The following lemma is an
important step towards this.

LEMMA 3.3. There exist finite positive constants c′ and c′′ such that the following holds.
Let T = exp(c′ logk(n)) ·T (k,1/n2) and let Y1, . . . , YT be i.i.d. traces from the TED deletion
channel. With probability at least 1 − exp(−c′′√k) the following hold:

1. The FINDPATHS algorithm is fully correct for all traces Y1, . . . , YT .
2. For every j ∈ Jd−1 we have that |Aj | ≥ T (k,1/n2).

PROOF. The first claim follows from Lemma 3.2 and a union bound, using the fact
that T = exp(O(logk(n) + k1/3)). For each j ∈ Jd−1, the path PX(j) consists of d − 1
nonroot nodes and hence it survives in a trace with probability (1 − q)d−1. Since T ≥
2(1 − q)−(d−1)T (k,1/n2), the second claim follows from a standard Chernoff bound. �

Finishing the proof of Theorem 1.3.

PROOF OF THEOREM 1.3. The reconstruction algorithm is described in Algorithm 2,
with a subroutine described in Algorithm 1. Let E be the event that (1) the FINDPATHS

algorithm is fully correct for all traces Y1, . . . , YT , and (2) for every j ∈ Jd−1 we have that
|Aj | ≥ T (k,1/n2). By Lemma 3.3 we have that P(E) ≥ 1 − exp(−c′′√k).

2786 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

FIG. 5. An example of a trace that is s-stable for i (where here s = 3).

Conditioned on the event E , the reconstruction algorithm correctly reconstructs the labels
of PX(j) for every j ∈ Jd−1 (see lines 14–17 of Algorithm 2); in other words, the recon-
struction algorithm correctly reconstructs the labels of all internal nodes of X.

We next turn to the leaves of X. Conditioned on the event E we have that |Aj | ≥
T (k,1/n2), so using string trace reconstruction we can correctly reconstruct the labels of
all children of j with probability at least 1 − 1/n2. Since there are at most n nodes in Jd−1,
a union bound shows that, conditioned on the event E , we can correctly reconstruct the labels
of all leaves of X with probability at least 1 − 1/n.

Overall, the error probability in reconstructing the labels of X is at most exp(−c′′√k) +
2/n. �

3.2. Proof of Theorem 1.4 concerning arbitrary degree trees. Recall the definition for I
defined in the first paragraph of Section 2.1: I := ⋃d−1

t=1 It , where I1 := J1 = {0,1, . . . , k−1}
and for t ≥ 2, It := {i ∈ Jt | i mod k �= 0}, and Jt is the set of the nodes at depth t . We use
traces that have a strong underlying structure, which we call s-stable; see Figure 5 for an
illustration.

DEFINITION 3.4. A trace Y is s-stable for i ∈ I if GY (i) �=⊥, and for every internal
node v in GY (i) with height h ≤ s in Y , each of the k children of v has height exactly h − 1
in Y .

Algorithm 3 below states, in pseudocode, our reconstruction algorithm for proving Theo-
rem 1.4. At a high level, we will recover the labels for GX(i) separately for each i ∈ I , which
is sufficient because these subtrees cover all of the nonroot nodes in X.

The challenge is that, in the TED deletion model, GX(i) may shift to an incorrect position,
even when GY (i) �=⊥. This happens, for example, when the parent of i has children deleted
in such a way that i moves to the left or right, but i still has k − 1 siblings (some of which
are new); see Figures 6 and 7 for an illustration. The intuition for overcoming this issue is as
follows. Let u be a node in GX(i) with child u′ that is not a leaf (so u and u′ both originally
have k children). If u and all of its k children survive in a trace, then we will be in good
shape. However, consider the situation when u survives and u′ is deleted. In the TED model,
we expect (1 − q)k children of u′ to move up to become children of u. Since this occurs for
every deleted child of u, we expect u to now have many more than k children.

The bad case is when u has exactly k children in a trace after some of its original chil-
dren are deleted; see Figure 7 for an illustration. This only happens when subtrees rooted
at children of u are completely deleted. If such a subtree is large (i.e., u is higher up in the
tree), then this is extremely unlikely. To deal with the nodes u closer to the leaves, we use the
s-stable property to force the relevant subtrees to survive.

RECONSTRUCTING TREES FROM TRACES 2787

Algorithm 3 Reconstructing k-ary trees, arbitrary k, TED deletion model

Set s = �logk log1/q(3dk)� and T = C log(n) · (1 − q)−(dk+s2k) (for a large enough C).
Input: traces Y1, . . . , YT sampled independently from the TED deletion channel.

1: Set A = {Y1, . . . , YT }.
2: for i ∈ I do
3: Initialize Ai = ∅.
4: for t = 1 to T do
5: if Yt is s-stable for i then add Yt to Ai .
6: end if
7: end for
8: for node b in GX(i) do
9: Let the learned label of b be the majority vote over all Y ∈ Ai of the labels on

node b in GY (i), as in Lemma 3.6.
10: end for
11: end for
12: Output: Union the learned labels of GX(i) over all i ∈ I to reconstruct labels of X, as

described in Remark 2.

An obvious way for Y to be s-stable is for it to contain GX(i) and enough relevant de-
scendants of nodes in GX(i). Let G+

X(i) be the union of GX(i) and the k children of every
internal node in GX(i); see Figure 6 for an illustration. Then Y will be s-stable if it contains
G+

X(i) and at least one path to a leaf (in X) from every node in G+
X(i) with height at most s.

In Lemma 3.5, we even argue that this happens with high enough probability to achieve the
bound in the theorem.

Unfortunately, we cannot directly check whether Y contains the exact nodes in G+
X(i). We

can check if Y is s-stable for i by examining the nodes of GY (i) and their descendants in
Y . But if Y is s-stable, then it is still not necessarily the case that GY (i) = GX(i), since the
nodes in GX(i) may have shifted in Y or been deleted.

To get around this complication, we rely on the s-stable property of a trace. We argue in
Lemma 3.6 that if s is large enough and a trace Y is s-stable for i, then with probability at
least 2/3, we have GY (i) = GX(i). We take a majority vote of GY (i) over O(logn) traces Y

to recover GX(i) with high probability. Since the subtrees GX(i) for i ∈ I cover X, we will
be done.

Analyzing and using stable traces. In what follows, we fix s = �logk log1/q(3dk)�. We
first show that a trace is s-stable with good enough probability.

LEMMA 3.5. For i ∈ I , a trace is s-stable for i with probability at least (1 − q)dk+s2k .

FIG. 6. Example of G+
X(i), where the node i is orange, and the full subtree is bold.

2788 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

FIG. 7. Two traces, one “bad” and one “good”. In the top two trees, gray nodes in X are deleted to produce the
corresponding traces below. The trace on the left has the subtree rooted at i in the incorrect location (it moved
over to the left). The trace on the right has the subtree in the correct location.

PROOF. Being s-stable has two conditions. First, we need GY (i) �=⊥. Let G+
X(i) be the

union of GX(i) and the k children of every internal node in GX(i), where |G+
X(i)| = dk + 1.

We will prove that if Y contains G+
X(i), then GY (i) �=⊥, because in fact, GY (i) = GX(i).

Since the root is never deleted, all nodes in G+
X(i) survive in a trace with probability (1−q)dk ,

and so GY (i) = GX(i) with at least this probability.
Assume that Y contains G+

X(i). Let GX(i) = u0, . . . , ud+k−1, and consider building
GY (i) = v0, . . . , vd+k−1 using πi . We argue recursively: For t ∈ [d − 1], we assume that
vt ′ = ut ′ for all t ′ < t , and we prove that vt = ut as well. The base case t ′ = 0 holds because
the root v0 = u0 is never deleted. Then, since Y contains G+

X(i), we know that vt ′ = ut ′ has
exactly k children in Y , which are the children of ut ′ in X. Moreover, the left-to-right order
of these k children is preserved in the deletion model. Therefore, the child of vt ′ in position
πi(t

′) must indeed be ut ′+1 for all t ′ < t . This establishes vt = ut for all t ∈ {0,1, . . . , d − 1}.
For the leaves of GX(i), when vd−1 = ud−1, and vd−1 has k children in Y , then we must also
have vd, . . . , vd+k−1 = ud, . . . , ud+k−1.

For the second condition of s-stability, consider an internal node ut in GX(i) with height
h = d − t satisfying 1 ≤ h ≤ s. Let u′

0, . . . , u
′
k−1 be the children of ut in X. Because u′

j has
height h − 1 in X, there is some path with h nodes from u′

j to a leaf in X. Consider one such
path for each j = 0, . . . , k − 1 such that j �= πi(t). Since there are k − 1 choices for j , let
Pt be the union of these k − 1 paths, where |Pt | = h(k − 1) ≤ s(k − 1). The survival of Pt

guarantees that u′
j has the correct height for Y to be s-stable. Since |⋃d−1

t=d−s Pt | ≤ s2(k − 1),
and each node survives independently with probability (1 − q), we have that Pd−s, . . . ,Pd−1

survive with probability at least (1 − q)s
2(k−1).

Combining these two conditions, Y is s-stable with probability at least (1 − q)dk+s2k . �

We now formalize the intuition that if all nodes in GY (i) have k children, and the parents
are high enough in the tree, then the children are probably correct. The reason is that subtrees
rooted at their children are unlikely to be completely deleted. This is the only bad case, since
otherwise, we expect deleted nodes to cause their parents to have many more than k children.
Finally, since the trace is s-stable, the nodes near the leaves will be correct as well.

LEMMA 3.6. For i ∈ I , if Y is a random s-stable trace for i, then GY (i) = GX(i) with
probability at least 2/3.

PROOF. Since Y is s-stable, GY (i) �=⊥. Let GY (i) = v0, . . . , vd+k−1 and GX(i) =
u0, . . . , ud+k−1, where vt and ut have depth t ∈ {0,1, . . . , d − 1}, and vd−1 and ud−1 have
children vd, . . . , vd+k−1 and ud, . . . , ud+k−1, respectively. Our strategy is to define an event

RECONSTRUCTING TREES FROM TRACES 2789

E that happens with probability at least 2/3 and implies that vt = ut for t ≤ d + k − 1. Con-
sider t ∈ [d], and let u′

0, . . . , u
′
k−1 be the children of ut−1 in X. Define Et to be the event that,

for every j ∈ {0,1, . . . , k − 1}, at least one node in the subtree rooted at u′
j survives in Y .

Then, define E≤m = ⋂m
t=1 Et and set E = E≤d .

We first argue that when E≤m holds, then vt = ut for all t ≤ m. Because the root has not
been deleted, we have v0 = u0. Then, for t ∈ [m], we assume that vt ′ = ut ′ for t ′ < t , and we
prove that vt = ut .

Because Y is s-stable, vt−1 has k children in Y . Denote them v′
0, . . . , v

′
k−1. We need to

show that ut is in position πi(t − 1) among them, so that vt = v′
πi(t−1) = ut . Since Et holds,

there is some surviving node in Y from the subtree rooted at each original child of ut−1 in X.
Moreover, since ut−1 = vt−1, this accounts for at least k children of vt−1 in Y . Because there
are exactly k children of vt−1, it must be the case that v′

πi(t−1) is originally from the subtree
rooted at ut in X. In particular, v′

πi(t−1) = ut if and only if ut survives in Y .
We claim that if ut were deleted, then it would contradict Y being s-stable, since we would

have GY (i) =⊥ instead. Indeed, the deletion of ut would cause v′
πi(t−1) to have height less

than d − t in Y . This would imply that at some depth d ′ with t < d ′ < d , the node vd ′ in
GY (i) would be a leaf, leading to GY (i) =⊥. We conclude that ut survives in Y , and so that
vt = v′

πi(t−1) = ut , as desired.
We have shown that E guarantees that vt = ut for all t ≤ d −1. In particular, vd−1 = ud−1,

and the k children of vd−1 in Y must be the children of ud−1 in X. This finishes the argument
that E implies that vt = ut for all t ≤ d + k − 1, that is, GY (i) = GX(i).

Now we prove that E happens with probability at least 2/3 in an s-stable trace. We prove
this in two steps. First, we argue that E≤d−s occurs with probability at least 2/3. Then,
we show that E≤d−s implies E . Consider the node ut−1 in GX(i) for t ∈ [d − s], and let
u′

0, . . . , u
′
k−1 be the k children of ut−1 in X. Since the height of u′

j is at least s, the subtree

rooted at u′
j in X contains at least

∑s
�=0 k� ≥ ks nodes. The probability that all of these nodes

are deleted is at most qks
. Because s = �logk log1/q(3dk)�, this is at most 1/(3dk). Taking a

union bound over the k children implies that Et occurs with probability at least 1 − 1/(3d),
and taking a union bound over t ∈ [d − s] implies that E≤d−s holds with probability at least
2/3.

The final step is to prove that E happens with probability one, in an s-stable trace, as-
suming that E≤d−s holds. More precisely, we will show that E≤d−s+� implies Ed−s+�+1 for
� = 0,1 . . . , s − 1. We have already argued that E≤d−s+� guarantees that vd−s+� = ud−s+�.
We claim that the k children v′

0, . . . , v
′
k−1 of vd−s+� are the original children of ud−s+� in X

(and this clearly implies Ed−s+�+1). Since Y is s-stable, there is a path with s − � + 1 nodes
from v′

j to a leaf in Y . If v′
j were not an original child of ud−s+�, then all such paths would

have at most s − � nodes. This implies no children of ud−s+� = vd−s+� have been deleted in
Y , and their existence witnesses the survival of the subtrees needed for Ed−s+�+1. Since this
holds for � = 0,1 . . . , s, we conclude that E = E≤d follows from E≤d−s in an s-stable trace,
and Pr[GY (i) = GX(i)] ≥ Pr[E] = Pr[E≤d−s] ≥ 2/3. �

Completing the proof of Theorem 1.4.

PROOF OF THEOREM 1.4. Let A be a set of T = C log(n)/(1 − q)dk+s2k traces with C

a large enough constant. By Lemma 3.5, each trace in A is s-stable for i with probability
(1 − q)dk+s2k . Therefore, by setting C large enough and taking a union bound over i ∈ I , we
can ensure that with probability at least 1 − 1/n2, for every i ∈ I there is a subset Ai ⊆ A of
s-stable traces for i with |Ai | ≥ C′ logn, for a constant C ′ to be set later.

By Lemma 3.6, each trace Y ∈ Ai has the property that GY (i) = GX(i) with probability at
least 2/3. Let fi(Y) ∈ {0,1}d+k−1 be the labels of GY (i) in Y . In expectation over Y ∈Ai , we

2790 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

FIG. 8. The partition of the tree X into the subtrees {HX(i) : i ∈ I} is illustrated in gray. The bijection
ψ : Jd−1 → I maps, for each gray subtree, a single green node to a single orange node in that subtree. Nodes
that are both green and orange map to themselves.

have that at least a 2/3 fraction of Y satisfy fi(Y) = fi(X). Therefore, since |Ai | ≥ C′ logn

for a large enough constant C′, we have by a standard Chernoff bound that the majority value
of fi(Y) over Y ∈ Ai is equal to fi(X), with probability at least 1 − 1/n2. For each i ∈ I ,
our reconstruction algorithm uses this majority vote to deduce the labels for GX(i). Taking a
union bound over i ∈ I , where |I| ≤ n, we correctly label all nodes with probability at least
1 − 1/n.

It remains to show that T = exp(O(dk)), where d = O(logk n). Recall that we have set
s = �logk log1/q(3dk)�. If k ≥ d , then s ≤ c log logk/ log k for a constant c, since q is a
constant, and so s = O(1). If k ≤ d , then s ≤ c log logd , and in particular, s2 < c′′d for some
constant c′′. Therefore, for any k, we have T ≤ C logn · exp(c′dk) for some constant c′ > 1
depending only on q , and since log logn < dk, we conclude that that T = exp(O(dk)). �

4. Reconstructing trees, left-propagation model. In this section we present our two
algorithms for k-ary trees in the left-propagation deletion model.

4.1. Proof of Theorem 1.5 concerning large degree trees. Recall the definitions from
the first paragraph in Section 2.1, in particular that of I . Recall also that the sets HX(i)

for i ∈ I partition the nonroot nodes of X, and each HX(i) contains exactly one node from
Jd−1; see Figure 8 for an illustration. Define the bijection ψ : Jd−1 → I as ψ(j) = i for the
distinct i such that j ∈ HX(i); see Figure 8 again for an illustration. For each fixed j ∈ Jd−1
and each trace Y , we will extract a bit-string sY (j) and use it to reconstruct the labels for
HX(ψ(j)). We only define sY (j) whenever PY (j) �=⊥, but this suffices for our purposes (as
discussed later). To define sY (j), we need some notation. Let v0, v1, . . . , vd−1 be the nodes
in PY (j), where vt has depth t in Y . Then, let vd, . . . , vd+k′ be the children of vd−1 in Y ,
where k′ ≤ k − 1. Let i = ψ(j) and let ti be the depth of i in X. Finally, define sY (j) as a
bit-string of length d + k′ − ti + 1 consisting of the labels in Y of the nodes vti , . . . , vd+k′ ;
see Figure 9 for an illustration.

Algorithm 4 below states, in pseudocode, our reconstruction algorithm for proving Theo-
rem 1.5. We note that this reconstruction algorithm is tailored to the left-propagation deletion
model.

For complete k-ary trees with sufficiently large k ≥ c logn, a trace Y has PY (j) �=⊥ for
all nodes j ∈ Jd−1 with high probability. When PY (j) �=⊥ and j ∈ HX(i), we can extract
a subset of HX(i) that behaves as if it went through the string deletion channel (i.e., as if it
were a path on |HX(i)| nodes). Therefore, using traces with PY (j) �=⊥ for all j ∈ Jd−1, we
reduce to string trace reconstruction (see Figure 9 for an illustration), and we reconstruct the
labels for each HX(i) separately. This suffices because the subtrees HX(i) for i ∈ I partition
the nonroot nodes of X (see Figure 8 for an illustration).

RECONSTRUCTING TREES FROM TRACES 2791

FIG. 9. Extracting the strings sY (j) from the subtrees that contain the path PY (j).

We first argue that PY (j) �=⊥ with high probability when k ≥ c logn.

LEMMA 4.1. Let k ≥ c logn. In the Left-Propagation model, a random trace Y has
PY (j) �=⊥ for every j ∈ Jd−1 with probability at least 1 − exp(−c′k).

PROOF. The property that Y has PY (j) �=⊥ for every j ∈ Jd−1 is equivalent to Y con-
taining a complete k-ary subtree of depth d − 1 with the same root as X. Consider any node
j ∈ Jd−1, and recall that the subtree GX(j) has d + k − 1 nonroot nodes. Each nonroot node
in GX(j) survives independently in Y with probability (1−q). Let E ′ be the event that at least
d nodes from GX(j) survive in Y for every j ∈ Jd−1. Because k ≥ c logn and d ≤ logk n

and |Jd−1| ≤ n, a standard Chernoff and union bound implies that E ′ holds with probability
1 − exp(−c′k) for a constant c′ > 0 depending on q . When E ′ holds, for all j ∈ Jd−1, every
node in PY (j) has exactly k children in Y and PY (j) �=⊥. �

PROOF OF THEOREM 1.5. Let T = T (d + k,1/n2) be the number of traces needed to
learn d + k bits with probability 1 − 1/n2 in the string model with deletion probability q .
We will reconstruct X with probability 1 − O(1/n) using T traces from the left-propagation
model.

By Lemma 4.1, a trace Y has PY (j) �=⊥ for every j ∈ Jd−1 with probability 1 −
exp(−c′k). By Theorem 1.1 we have that T = exp(O((d + k)1/3)) = exp(O(k1/3)), where
the second inequality is due to d ≤ k. Thus by a union bound it follows that, with probability

Algorithm 4 Reconstructing k-ary trees, k ≥ c log(n), left-propagation deletion model

Set T = T (d + k,1/n2).
Input: traces Y1, . . . , YT sampled independently from the TED deletion channel.

1: Set A = {Y1, . . . , YT }.
2: if there exists a trace Y ∈ A and a node j ∈ Jd−1 such that PY (j) =⊥ � This happens

with vanishing probability.
3: then Terminate the algorithm and produce no output.
4: else � This happens with high probability.
5: for j ∈ Jd−1 do
6: Reconstruct labels of HX(ψ(j)) from {sY (j)}Y∈A, via string trace reconstruction

(Theorem 1.1).
7: end for
8: Output: Union the learned labels of HX(i) over all i ∈ I to reconstruct labels of X,

as described in Remark 2.
9: end if

2792 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

at least 1 − exp(−c′′k) for some constant c′′ > 0, we have PY (j) �=⊥ for all traces Y and
nodes j ∈ Jd−1. So from now on we assume that PY (j) �=⊥ for every trace Y and every
j ∈ Jd−1.

Decompose X into subtrees HX(ψ(j)) for j ∈ Jd−1; see Figure 8 for an illustration. For
each of the T traces Y , extract the bit-string sY (j); see Figure 9 for an illustration. Consider
these as T traces from the string deletion model on |HX(ψ(j))| < d + k bits. More precisely,
let sX(j) be the labels in X for the nodes in HX(ψ(j)). We claim that sY (j) is a valid trace
for the string deletion model with unknown string sX(j). In the left-propagation model, when
PY (j) �=⊥, the nodes considered in Y for sY (j) form a subsequence of the corresponding
nodes in X. Therefore, since each node is deleted with probability q , the bits in sY (j) will
be a trace of the string sX(j). Though we only consider traces with at least d bits remaining,
the probability that at least one trace of T has less than d bits occurs with probability at most
exp(−O(k)). So by slightly increasing the factor C ′ in T , we can use Theorem 1.1 to see T

traces suffice to reconstruct sX(j) with probability 1 − 1/n2. Moreover, sX(j) are the labels
for HX(ψ(j)). Taking a union bound over |I| ≤ n, we can reconstruct HX(i) for all i ∈ I
with probability at least 1 − 1/n. �

4.2. Proof of Theorem 1.6 concerning arbitrary degree trees. Algorithm 5 below states,
in pseudocode, our reconstruction algorithm for proving Theorem 1.6.

As in the proof of Theorem 1.5, we reconstruct X by reconstructing the subtrees HX(i) for
i ∈ I , which partition the nonroot nodes of X. Instead of reducing to string reconstruction, we
use traces with GY (i) �=⊥ to directly obtain labels for HX(i). We only need to take enough
traces to balance out the fact that a trace with GY (i) �=⊥ for i ∈ I occurs with probability
exp(−O(d + k)).

Recovering the labels for subtrees. We first show that if a trace satisfies GY (i) �=⊥, then
we can reconstruct the labels of HX(i); see Figure 10 for an illustration.

Algorithm 5 Reconstructing k-ary trees, arbitrary k, Left Propagation deletion model

Set T = C(1 − q)−(d+c′k) log(n) (for large enough c′ and C).
Input: traces Y1, . . . , YT sampled independently from the TED deletion channel.

1: for every i ∈ I do
2: Initialize Ai = ∅.
3: for t = 1 to T do
4: if Yt has GYt (i) �=⊥ then add Yt to Ai .
5: end if
6: end for
7: end for
8: if there exists i ∈ I such that Ai = ∅ � This happens with vanishing probability.
9: then Terminate the algorithm and produce no output.

10: else � This happens with high probability.
11: for every i ∈ I do
12: Choose an arbitrary Y ∈ Ai .
13: Reconstruct labels in HX(i) bit by bit as those of HY (i), using Remark 1.
14: end for
15: Output: Union the learned labels of HX(i) over all i ∈ I to reconstruct labels of X,

as described in Remark 2.
16: end if

RECONSTRUCTING TREES FROM TRACES 2793

FIG. 10. Extracting correct labels for sX(j) from a single trace containing a caterpillar, GY (i) �=⊥.

LEMMA 4.2. In the left-propagation model, if GY (i) �=⊥, then HY (i) = HX(i) and the
labels for these subtrees are identical in Y and X.

PROOF. Let sY (i) = v�, . . . , vb be the labels on the left only path from i to the leaf plus
its siblings in trace Y . These are the labels on HY (i). Similarly, let sX(i) = u�′, . . . , ub′ be
the labels on the left-only path from i to the leaf plus its siblings in X. These are the labels
on HX(i). Due to the behavior of the left-propagation model, the string sY (i) is a trace of the
string sX(i). When GY (i) �=⊥, no nodes of HX(i) could have been deleted to obtain the trace
HY (i), otherwise the number of leaves in GY (i) would be too small and GY (i) would not be
defined. As sY (i) is a trace of sX(i) and |HY (i)| = |HX(i)|, this implies that HY (i) = HX(i).

�

LEMMA 4.3. Fix i ∈ I and let Y be a trace from the left-propagation deletion model.
There exists an absolute constant c′ > 1 such that with probability at least (1 − q)d+c′k we
have that GY (i) �=⊥.

PROOF. There are d + k nodes in GX(i) and they all survive in Y with probability
(1 − q)d+k . From now on, we assume this holds. Let GX(i) = u0, . . . , ud+k−1, where ut

has depth t ∈ {0,1, . . . , d}, and ud−1 has children ud, . . . , ud+k−1. Consider t ∈ [d], and
let u′

0, . . . , u
′
k−1 be the k children of ut−1 in X. Define Et to be the event that, for every

j ∈ {0,1, . . . , k − 1}, at least one node in the subtree rooted at u′
j survives in Y . We observe

that, in the left-propagation model, if both
⋂d

t=1 Et holds and GX(i) survives, then we have
GY (i) �=⊥.

Because GX(i) surviving implies that the k children of ud−1 survive, we already know
that Ed holds. For t ∈ [d − 1], each child u′

j of ut−1 has height h = d − t + 1 in X. In

particular, the subtree rooted at u′
j in X contains at least kd−t+1 nodes. If u′

j ∈ GX(i), then
we have assumed it survives, otherwise there are k − 1 other subtrees. Since the subtrees
considered are independent, at least one node survives from each of them (for all t ∈ [d − 1])
with probability at least

d∏
h=2

(
1 − qkh)k−1 = (1 − q)ck,

for some constant c. Putting everything together, GX(i) survives and
⋂d

t=1 Et holds, and
therefore GY (i) �=⊥, with probability at least (1 − q)d+k · (1 − q)ck = (1 − q)d+(c+1)k . �

2794 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

FIG. 11. DFS indexing and example trace (in both deletion models) for a (12,3)-spider.

Completing the proof of Theorem 1.6.

PROOF OF THEOREM 1.6. By Lemma 4.3, the probability that none of T traces satisfy
GY (i) �=⊥ for some i ∈ I is at most

|I|(1 − (1 − q)d+c′k)T ≤ n exp
(−T (1 − q)d+c′k).

To ensure that at least one trace has GY (i) �=⊥ for every i ∈ I with high probability, we take
T ′ = O(T logn) traces, where T satisfies

T = (1 − q)−(d+c′k) ≤ (1 − q)− ln(n)/ ln(k)−c′k = nln(1/(1−q))(c′k/ ln(n)+1/ ln(k)).

By Lemma 4.2, any trace with GY (i) �=⊥ induces the correct labeling of HX(i) by using the
labels for the nodes in HY (i). In other words, with high probability, a set of T ′ = O(T logn)

traces yields a correct labeling of HX(i) for all i ∈ I . Since the subtrees HX(i) for i ∈ I form
a partition of X, we can recover all labels in X. �

5. Reconstructing spiders. In this section, we describe how to reconstruct spiders and
prove Theorem 1.7 and Proposition 1.8. We start with preliminaries in Section 5.1. An outline
of the proof for Theorem 1.7 is followed by the full proof in Section 5.2. The proof assumes a
lemma requiring complex analysis that is deferred to Section 5.3. Proposition 1.8 is proven in
Section 5.4. The remaining proofs of lemmas stated in this section are detailed in Section 5.5.

5.1. Spider algorithm preliminaries. When a labeled (n, d)-spider, X, goes through the
deletion channel, we assume that its trace, Y , is an (n, d)-spider by inserting length d paths
of 0 s after the remaining paths and nodes labeled 0 to the end of paths. After this, traces have
n/d paths of length d (excluding the root).

We define a left-to-right ordered DFS index for (n, d)-spiders, illustrated in Figure 11. The
labels increase along the length of the paths from the root and increase left to right among
the paths. Specifically, if node v is in the ith path from the left and has depth j , then its label
is (i − 1)d + j − 1. These labels will be used to define appropriate generating functions. As
discussed in Remark 4, we need not consider the root as part of the generating function.

5.2. Proof of Theorem 1.7 concerning (n, d)-spiders with small d . In the regime where
spiders have short paths (d ≤ log1/q n), we use mean-based algorithms that generalize the
methods of [14, 15, 34]. Using the DFS indexing of nodes, let X be an (n, d)-spider with
labels {aj }n−1

j=0 and let Y be a trace of X, with the labels of Y denoted by {bj }n−1
j=0. Consider

now the random generating function

n−1∑
j=0

bjw
j

RECONSTRUCTING TREES FROM TRACES 2795

for w ∈ C. Due to the special structure of spiders, the expected value of this random generat-
ing function can be computed (see Lemma 5.1 below), and while it is more complicated than
the corresponding formula for strings, it is still tractable. This is useful since by averaging
samples we can approximate this expected value.

We then show that for every pair of labeled (n, d)-spiders, X1 and X2, with different binary
labels, we can carefully choose w ∈ C so that the corresponding values of the respective
generating functions differ in expectation at some index j = j (X1,X2). In choosing between
candidate spiders X1 and X2, the algorithm deems the better match of the pair to be the spider
for which the expected value of the generating function at w ∈ C is closer to the mean of the
traces at j . If any spider is a better match compared to every other spider, it is said to be the
best match, and the algorithm outputs that spider.

For the quantitative estimates, the key technical challenge is to lower bound the modulus
of the (expected) generating function on a carefully chosen arc of the unit disc in the complex
plane. Our analysis, based on harmonic measure, is inspired by [8], as well as the recent work
of [20].

When d is constant, the reconstruction problem on (n, d)-spiders can be reduced to string
trace reconstruction (see Proposition 5.8). Hence, we will assume that d is greater than a spe-
cific constant (d ≥ 20 suffices). We begin by computing the expected value of the generating
function for an (n, d)-spider which has gone through a deletion channel with parameter q .
We denote this expected generating function by A(w), where w ∈C.

LEMMA 5.1. Let a = {ai}n−1
i=0 be the labels of an (n, d)-spider with labels ai ∈ R and let

b = {bj }n−1
j=0 be the labels of its trace from the deletion channel with deletion probability q .

Then

A(w) := E

(
n−1∑
j=0

bjw
j

)
= (1 − q)

n−1∑
�=0

a�

(
q + (1 − q)w

)� (mod d)(
qd + (

1 − qd)
wd)� �

d
�
,

where the expectation is over the random labels b.

While A(w) is written as only a function of w, it implicitly depends on the labels a of
the original spider. The proof of Lemma 5.1 is in Section 5.5, as it follows from a standard
manipulation of equations. We use this generating function to distinguish between two can-
didate (n, d)-spiders X1 and X2, which have labels a1 = {a1

j }n−1
j=0 and a2 = {a2

j }n−1
j=0 which

are different (i.e., there exists j ∈ {0,1, . . . , n − 1} such that a1
j �= a2

j). Let Y 1 and Y 2 denote

random traces with labels b1 = {b1
j }n−1

j=0 and b2 = {b2
j }n−1

j=0 that arise from passing X1 and X2

through the deletion channel with deletion probability q .
Define a := a1 − a2 and let A(w) be the expected generating function with input a. From

Lemma 5.1 we have that

(6)
n−1∑
j=0

(
E

[
b1
j

] −E
[
b2
j

])
wj = A(w).

Let �∗ := arg min�≥0{a� �= 0} (note that �∗ ≤ n − 1 by construction) and define

Ã(w) := (1 − q)

n−1∑
�=�∗

a�

(
q + (1 − q)w

)� (mod d)(
qd + (

1 − qd)
wd)� �

d
�−� �∗

d
�
.

Observe that A(w) = (qd + (1 − qd)wd)� �∗
d

� · Ã(w); accordingly, we call Ã(w) the factored
generating function. Taking absolute values in equation (6) we obtain that

(7)
n−1∑
j=0

∣∣E[
b1
j

] −E
[
b2
j

]∣∣|w|j ≥ ∣∣A(w)
∣∣ = (1 − q)

∣∣(1 − qd)
wd + qd

∣∣� �∗
d

�∣∣Ã(w)
∣∣.

2796 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

Ultimately, we aim to bound from below maxj |E[b1
j] −E[b2

j]| by choosing w ∈ C appropri-

ately. To do this, we balance |w| on the left hand side of equation (7) with |(1 − qd)wd + qd |
on the right; it would be best if |w| were small while |(1 − qd)wd + qd | were large,
and so a compromise is to let w vary along an arc of the unit disc D. In particular, let
γL := {eiθ : −π/L ≤ θ ≤ π/L}, where we assume that L ≥ 20, a choice which will become
clear later. The following lemma bounds |(1 − qd)wd + qd | from below while w ∈ γL. The
proof is a standard calculation, deferred to Section 5.5.

LEMMA 5.2. For w ∈ γL we have that∣∣(1 − qd)
wd + qd

∣∣ ≥ exp
(−2π2 · qd(

1 − qd)
d2/L2)

.

Additionally, we bound supγL
|Ã(w)| from below using Lemma 5.3, whose proof is in

Section 5.3.

LEMMA 5.3. Let 0 < q < 0.7 be a constant. There exists ζ ∈ γL, as well as a constant
C > 0 depending only on q , such that |Ã(ζ)| ≥ exp(−C · dL).

We are now ready to prove Theorem 1.7.

PROOF OF THEOREM 1.7. Let ζ ∈ γL be the point guaranteed by Lemma 5.3. Substitut-
ing ζ into equation (7), we use Lemma 5.3 and the fact that |ζ | = 1 to see that

n−1∑
j=0

∣∣E[
b1
j

] −E
[
b2
j

]∣∣ ≥ ∣∣A(ζ)
∣∣ = (1 − q)

∣∣(1 − qd)
ζ d + qd

∣∣� �∗
d

�∣∣Ã(ζ)
∣∣

≥ (1 − q)
∣∣(1 − qd)

ζ d + qd
∣∣� �∗

d
� exp(−C · dL),

for a constant C > 0 depending only on q . Using the bound �∗ < n, as well as Lemma 5.2
(where we drop the factor of 1 − qd in the exponent), we have that

n−1∑
j=0

∣∣E[
b1
j

] −E
[
b2
j

]∣∣ ≥ (1 − q) exp
(−2π2 · qdnd/L2)

exp(−C · dL).

Setting L = max{(4π2nqd/C)1/3,20} and plugging into the display above, we find that there
exists an index j such that∣∣E[

b1
j

] −E
[
b2
j

]∣∣ ≥ 1

n
exp

(−C′ · d(
nqd)1/3)

(8)

for some constant C′ > 0 depending only on q . Therefore, we have shown that there is some
index j = j (X1,X2) where we expect the traces corresponding to X1 and X2 to differ sig-
nificantly.

Suppose spider X1 goes through the deletion channel and we observe T samples,
S1, . . . , ST where sample St has labels {ut

j }n−1
j=0. Let η denote the right hand side of equa-

tion (8). We say that a spider X2 is a better match than X1 for traces {St }t∈[T] if at the index
j = j (X1,X2), X2 looks closer to the traces than X1; that is, if∣∣∣∣∣ 1

T

T∑
t=1

ut
j −E

[
b2
j

]∣∣∣∣∣ ≤
∣∣∣∣∣ 1

T

T∑
t=1

ut
j −E

[
b1
j

]∣∣∣∣∣.
As before, the expectation is over the random labels b1 and b2. A Chernoff bound implies
that if the traces {St }t∈[T] came from spider X1, then the probability that X2 is a better match

RECONSTRUCTING TREES FROM TRACES 2797

than X1 is at most exp(−T η2/2). Repeating this for all pairs of binary labeled (n, d)-spiders,
the algorithm outputs X∗, the (n, d)-spider which is a better match than all others (the best
match), if such a spider exists. Otherwise, the algorithm outputs a random binary labeled
(n, d)-spider.

Last, we show that the algorithm correctly reconstructs an (n, d)-spider with high proba-
bility when d ≤ log1/q n. We bound from above the probability that the algorithm does not
find that X1 is the best match by a combination of a union bound and a Chernoff bound (as
discussed above). The probabilities below are taken over the random traces {St }t∈[T]:

Pr
[
X∗ �= X1] ≤ ∑

X2:X2 �=X1

Pr
[
X2 is a better match than X1] ≤ 2n · exp

(−T η2/2
)

= 2n exp
(
− T

2n2 exp
(−C · d(

nqd)1/3))
for a constant C > 0 depending only on q . This latter expression is at most 1/n if and only if

T ≥ 2n2(
n ln(2) + ln(n)

)
exp

(
Cd

(
nqd)1/3)

.

This holds if T ≥ exp(cd(nqd)1/3) for a large enough constant c depending only on q . �

5.3. Proof of Lemma 5.3. We assume basic knowledge of subharmonic functions and
harmonic measure. For background, we refer readers to any introductory complex analysis
book (e.g., [2, 18]). For a more elementary (but slightly weaker) bound, see Lemma 5.9 in
Section 5.5.

Let � ⊂ C be a bounded, open region, and let ∂� denote its boundary. The harmonic
measure of a subset γ ⊂ ∂� with respect to a point w0 ∈ �, denoted μ

w0
� (γ), is the proba-

bility that a Brownian motion starting at w0 exits � through γ . Let f (w) denote an analytic
function; we will choose f = Ã, which is a polynomial and hence analytic. Given |f (w0)|
at a point w0 ∈ � and a condition on the growth of |f | in �, we utilize harmonic measure to
bound |f | on ∂�. Specifically, we use that log |f | satisfies the sub-mean value property: for
all w0 ∈ � we have that

(9) log
∣∣f (w0)

∣∣ ≤
∫
∂�

log
∣∣f (w)

∣∣dμ
w0
� (w).

As in equation (9), we will define a region of integration where the value of log |Ã(w)| is
controlled along the boundary, and the boundary will contain γL = {eiθ : −π/L ≤ θ ≤ π/L}.
We need to separate this boundary into a few different pieces and use different techniques
to upper bound log |Ã(w)| on each curve. In fact, the methods of [20] show a lower bound
for supγL

|f (w)| for an analytic function f (w) satisfying the growth condition in Lemma 5.5
(see below), by using equation (9) and a particular choice of w0. We show that Ã satisfies the
growth condition specified in Lemma 5.5, then borrow techniques from [20] to upper bound
the right hand side of equation (9). However, we have to work more to find an appropriate
point w0 ∈ D in order to find a lower bound for the left hand side of equation (9), so that we
can also show a lower bound for supγL

|Ã(w)|. We discuss this difficulty in Remark 3.
In what follows, open discs of radius r centered at a point z are denoted as Dr(z). The unit

disc, D1(0), is an exception, denoted as D. Recall that L ≥ 20, and let upper and lower case
c’s with tick marks denote constants depending only on q .

PROOF OF LEMMA 5.3. First, we choose an appropriate point w0 where we can lower
bound |Ã(w0)|, as stated in Lemma 5.4.

2798 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

FIG. 12. The region �L = (D∩ DL) ∪ R with boundary ∂�L = γL ∪ γ ′
L ∪ γ ′′

L .

LEMMA 5.4. Let q < 0.7 and for fixed integer d > 0, let w0 := −q if d is odd and
w0 := qei·π(d−1)/d if d is even. Then there exists a constant c > 0 depending only on q such
that |Ã(w0)| ≥ e−c·d .

The calculation justifying the bound is standard and deferred to Section 5.5, but the choices
of w0 are quite careful. The choices depend on the parity of d so as to control the sign of
wd

0 . With these choices we can relate |q + (1 − q)w0| to |qd + (1 − qd)wd
0 |, a motive which

becomes clear in the proof of Lemma 5.4. Note that our inability to handle constant q ≥ 1/
√

2
comes from Lemma 5.4, as detailed in Remark 3.

In the following we fix w0 according to the specifications of Lemma 5.4. Next, we define
a region �L that contains w0, and whose boundary we integrate over; see Figure 12 for an
illustration. For a translate hL ∈ R

+, let DL = D1/2(1/2) + hL, where hL is chosen so that
DL ∩ ∂D = γL. Observe that L ≥ 20 implies hL ≤ 1/10. We also define a rectangle R ⊂ D

that has the following properties: R contains w0, R has nonempty intersection with DL, and
∂R has bounded distance from w0 and ∂D. As we only consider q bounded away from 1
and d ≥ 20, we may (and will) choose R to be centered about the real axis, with height 1/5
and with length extending from −0.8 to 1/2. Our region of integration is then defined as
�L := (D∩ DL) ∪ R.

We partition the boundary of �L into three parts by defining

γ ′
L :=

{
w ∈ ∂�L \ γL : |w| > 1

2
+ hL

}
, γ ′′

L :=
{
w ∈ ∂�L : |w| ≤ 1

2
+ hL

}
.

We thus have that ∂�L = γL ∪γ ′
L ∪γ ′′

L ; see Figure 12, where the different parts of the contour
are colored differently. Using the sub-mean value property, we see that

log
∣∣Ã(w0)

∣∣ ≤
∫
∂�L

log
∣∣Ã(w)

∣∣dμ
w0
�L

(w)

=
∫
γL

log
∣∣Ã(w)

∣∣dμ
w0
�L

(w) +
∫
γ ′
L

log
∣∣Ã(w)

∣∣dμ
w0
�L

(w) +
∫
γ ′′
L

log
∣∣Ã(w)

∣∣dμ
w0
�L

(w).

Next, we upper bound each of the integrals. Our upper bounds for γL and γ ′′
L are simple

modulus length bounds. We start with the integral over γL. We know that the boundary ∂�L

has constant length, the curve γL has length bounded by c/L for some constant c, and w0 is
bounded away from γL. Therefore the probability that a Brownian motion starting at w0 exits

RECONSTRUCTING TREES FROM TRACES 2799

�L through the arc γL is at most C/L for some constant C. That is, μ
w0
�L

(γL) ≤ C/L, where
we can choose C to hold for all w0 as q and d vary. Therefore we have that∫

γL

log
∣∣Ã(w)

∣∣dμ
w0
�L

(w) ≤ μ
w0
�L

(γL) · log sup
w∈γL

∣∣Ã(w)
∣∣ ≤ C

L
· log sup

w∈γL

∣∣Ã(w)
∣∣.(10)

Somewhat more work is needed to show that∫
γ ′
L

log
∣∣Ã(w)

∣∣dμ
w0
�L

(w) ≤ c′ and
∫
γ ′′
L

log
∣∣Ã(w)

∣∣dμ
w0
�L

(w) ≤ c′′.(11)

To prove these bounds, we use Lemma 5.5, a growth condition for the generating function.

LEMMA 5.5. For all w ∈ D and all deletion probabilities q ∈ (0,1), we have |Ã(w)| ≤
1

(1−q)(1−|w|) .

The proof of Lemma 5.5 is a triangle inequality calculation that we defer to Section 5.5.
We can directly apply Lemma 5.5 to bound the integral over γ ′′

L . By our choice of R and
the fact that hL ≤ 1/10, we have for all w ∈ γ ′′

L that |w| ≤ 0.83. Applying Lemma 5.5, we
see that |Ã(w)| ≤ 10/(1 − q) for all w ∈ γ ′′

L . Noting that harmonic measure is a probability
measure and thus μ

w0
�L

(γ ′′
L) ≤ 1, we have that∫

γ ′′
L

log
∣∣Ã(w)

∣∣dμ
w0
�L

(w) ≤ sup
w∈γ ′′

L

log
∣∣Ã(w)

∣∣ ≤ log
10

1 − q
.

We turn now to the integral over γ ′
L, where we cannot use modulus length bounds because

as |w| approaches 1, the factor 1/(1 − |w|) becomes arbitrarily large. However, we can still
use Lemma 5.5 to obtain that∫

γ ′
L

log
∣∣Ã(w)

∣∣dμ
w0
�L

(w) ≤ log
(

1

1 − q

)
+

∫
γ ′
L

log
(

1

1 − |w|
)

dμ
w0
�L

(w).

It remains to bound the integral on the right hand side of the display above. A Brownian
motion in �L starting at w0 must hit the segment sL = {w ∈ �L : Re(w) = 1

4 + hL} before it
hits γ ′

L, so ∫
γ ′
L

log
(

1

1 − |w|
)

dμ
w0
�L

(w) ≤ sup
z∈sL

∫
γ ′
L

log
(

1

1 − |w|
)

dμz
�L

(w).

Note that z and ∂�L will not be arbitrarily close. Considering Brownian motions starting
at z, we will upper bound the probability that it exits �L through γ ′

L by the probability that
it exits DL through γ ′

L. As z is bounded away from ∂�L and ∂DL, the measures μz
DL

and
μz

�L
are equivalent, meaning they have the same null sets. Then by the Radon–Nikodym

theorem, there exists a measurable function f = dμz
�L

/dμz
DL

such that for any measurable
set S, μz

�L
(S) = ∫

S f (w)dμz
DL

(w). From the probabilistic definition of harmonic measure,
observe that there exists a constant c > 0 such that for any measurable S ⊂ γ ′

L,

μz
�L

(S) ≤ c · μz
DL

(S).

Since μz
�L

/μz
DL

is bounded on γ ′
L, so is f up to a set of measure 0.3 The upper bound on f

almost everywhere is sufficient. Then returning to our remaining integral over γ ′
L, we obtain

3If f is unbounded on a set of positive measure, A ⊂ γ ′
L, then for all C, f ≥ C on A. Writing μz

�L
(A) =∫

A f dμz
DL

≥ Cμz
DL

(A), we see that μz
�L

(A)/μz
DL

(A) is unbounded.

2800 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

the upper bound

sup
z∈sL

∫
γ ′
L

log
(

1

1 − |w|
)

dμz
�L

(w) = sup
z∈sL

∫
γ ′
L

log
(

1

1 − |w|
)
f (w)dμz

DL
(w)

≤ c · sup
z∈sL

∫
γ ′
L

log
(

1

1 − |w|
)

dμz
DL

(w).

We move to harmonic measure with respect to a disc, instead of �L, so that we can switch
measures to integrate with respect to angles on the disc. Specifically, we have an explicit
form for the Radon–Nikodym derivative. Letting s denote the arc length measure and Dr

denote a disc of radius r containing the point z, dμz
Dr

/ds at a point ζ ∈ ∂Dr is the Poisson

kernel P(z, ζ) = r2−|z|2
2π ·r|z−ζ |2 . Note that P(z, ζ) is uniformly bounded above by a constant for

all ζ ∈ γ ′
L, as all z ∈ sL are bounded away from γ ′

L, since w ∈ γ ′
L has Re(w) ≥ 1/2. This

is a useful observation, as now we can integrate with respect to the angle on DL between
w = (1/2 + hL) + eiθ /2 ∈ γ ′

L and x = eiπ/L = 1/2 + hL + eiθ0/2, while only gaining a
constant factor depending on q in the upper bound. Recall x is the intersection point of ∂DL

and ∂D in the first quadrant. We use the following lemma to obtain a new bound. There are
several proofs for it using only elementary geometry, and we include one in Section 5.5.

LEMMA 5.6. For translate 0 < hL ≤ 1/10 satisfying eiπ/L ∈ DL∩D, consider the points
w = (1/2+hL)+ eiθ /2 with 0 ≤ θ ≤ π/2, and x = eiπ/L = 1/2+hL + eiθ0/2 with 0 ≤ θ0 ≤
θ . Then 1 − |w| ≥ 1

64(θ − θ0)
4.

As our region of integration is symmetric, it suffices to only show the inequality for γ ′
L in

the first quadrant. From the boundedness of the Poisson kernel and Lemma 5.6,

c · sup
z∈sL

∫
γ ′
L

log
(

1

1 − |w|
)

dμz
DL

(w) ≤ C ·
∫ π/2

θ0

(
log 64 + log

(
1

θ − θ0

)4)
dθ

≤ c′′ ·
∫ π/2

θ0

log
(

1

θ − θ0

)
dθ ≤ c′.

Having proven the bounds on the integrals in equation (10) and equation (11), we are now
ready to conclude the proof of Lemma 5.3. Combining these bounds with Lemma 5.4 and the
sub-mean value property inequality, we see that

−cd ≤ C

L
log sup

w∈γL

∣∣Ã(w)
∣∣ + c′ + c′′,

where all constants are positive and depend only on q . Rearranging, we now have the lower
bound supw∈γL

|Ã(w)| ≥ exp(−C′dL) for some constant C′ depending only on q . As γL is
a closed arc, there exists ζ ∈ γL such that |Ã(ζ)| = supw∈γL

|Ã(w)|, as desired. �

5.4. Bounds for spiders from string trace reconstruction. String reconstruction methods
can be used as a black box for spiders. For depth d ≥ log1/q n, this achieves the best known
bound. However, for smaller depths, our algorithm is more efficient.

Large depth (n, d)-spiders.

PROOF OF PROPOSITION 1.8. With probability (1 − qd)n/d , a trace contains at least
one non-root node from each of the n/d paths in the spider. When all paths are present, we
can match paths of the trace to paths of the original spider and learn paths separately. Using

RECONSTRUCTING TREES FROM TRACES 2801

only such traces, we are faced, for each path, with a string trace reconstruction problem with
censoring (see the Appendix), where the string length is d , the deletion probability is q ,
and the censoring probability is γ = 1 − (1 − qd)n/d−1. Lemma A.1 in the Appendix (with
ε = 1/2) tells us that

T cens
γ

(
d,

1

n2

)
≤ 3/2

(1 − qd)n/d
· T

(
d,

1

2n2

)
≤ 2 · T

(
d,

1

2n2

)
,

where the second inequality holds (for all n large enough) because (1 − qd)n/d → 1 as n →
∞ when d ≥ log1/q n. That is, if we observe 2 · T (d, 1

2n2) traces of the spider, then the bits

along each specific path can be reconstructed with error probability at most 1/n2. Hence, by
a union bound the bits along all paths can be reconstructed with error probability at most
(n/d) × (1/n2) ≤ 1/n. �

We can extend Proposition 1.8 to the following result. We omit the proof, which follows
the same outline and ideas as the proof of Proposition 1.8.

PROPOSITION 5.7. For n large enough, α ≥ 0, and d ≥ log1/q n − log1/q(log1+α n), an

(n, d)-spider can be reconstructed with exp(C(logα n)) · T (d, 1
2n2) traces with high proba-

bility, where C is a constant depending only on q .

Small depth (n, d)-spiders. When d = c log1/q n with constant 0 < c < 1, the same re-
construction strategy still applies, but it does worse than our mean-based algorithm (which
results in Theorem 1.7). In this regime of d , to ensure that with high probability we see even
a single trace containing all n/d paths, we must take exp(�(n1−c/ logn)) traces. It suffices
to take exp(O(n1−c/ logn)) ·T (d,1/n2) = exp(Õ(n1−c)) traces to ensure that enough traces
contain all n/d paths. However, our mean-based algorithm resulting in Theorem 1.7 does
better than this, requiring only exp(Õ(n(1−c)/3)) traces to reconstruct.

We observe that the previous results on string trace reconstruction can also be used to
derive the following proposition (in addition to Proposition 1.8 and Proposition 5.7). The
consequences are twofold: (i) when d = O(1), then the trace complexity of spiders is asymp-
totically the same as strings, and (ii) our result in Theorem 1.7 offers an improvement when
d = ω(1).

PROPOSITION 5.8. For d < log1/q n, we can reconstruct an (n, d)-spider with high

probability by using at most exp((C′n
d(1−q)2d)1/3) traces, for C′ > 0 depending on q .

We sketch the proof. A path in the spider of depth d retains all of its nodes with probability
(1−q)d . Equivalently, some node is deleted with probability q ′ = 1− (1−q)d . For any trace,
consider the modified channel that deletes any path entirely if it is missing at least one node.
With this modification, every row of the spider behaves as if it were a string on n/d bits in a
channel with deletion probability q ′. Opening up the proof of Theorem 1.1, for nonconstant
deletion probability q ′ = 1 − (1 − q)d , then gives the proposition.

5.5. Additional proofs and remarks for reconstructing spiders.

REMARK 3 (Remark for Theorem 1.7). In the proof of Lemma 5.3, which is needed
to prove Theorem 1.7, we are unable to handle general generating functions with deletion
probability 1/

√
2 < q < 1. We require some anchor point, w0, for which we can lower bound

|Ã(w0)| and a simple curve surrounding w0 for which we can upper bound |Ã(w)| along that

2802 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

curve. For any fixed |w| > 1, for d = �(1) we see that |(1 − qd)wd + qd | > 1 for sufficiently
large n. This results in terms on the order of cn/d in our generating function, for constant
c > 1. So our anchor point cannot lie outside of D, and more specifically the surrounding
curve cannot leave D.

Inside the unit disc, upper bounds on |Ã(w)| have a nice form due to Lemma 5.5. It seems
for any fixed point in w0 ∈ D, there is a factored generating function Ã(w) which is small at
w0, |A(w0)| = �(qd). However it is not clear whether for every factored generating function
Ã(w) there is some w0 ∈ D, not tending to the boundary, such that |Ã(w0)| > c for some
constant c depending only on q . Such arguments are common in complex analysis for families
of analytic functions which are sequentially compact, but our family of generating functions
does not satisfy this property.

PROOF OF LEMMA 5.1. We index the nonroot nodes of the spider according to the DFS
ordering described in Section 5.1. We can uniquely write any j ∈ {0,1, . . . , n − 1} as j =
d · sj + rj with sj ∈ {0,1, . . . , n/d − 1} corresponding to a particular path of the spider
and rj ∈ {0,1, . . . , d − 1} describing where along this path node j is. Consider two nodes,
j = d · sj + rj and � = d · s� + r�, with j ≥ �. After passing a through the deletion channel to
get the trace b, b� comes from aj if and only if aj is retained, exactly r� of the first rj nodes
in the path of j are retained, and exactly s� of the first sj paths are retained. This leads o the
following generating function:

E

[
n−1∑
�=0

b�w
�

]

= (1 − q)

n−1∑
�=0

w�
n−1∑
j=�

aj

(
rj
r�

)
(1 − q)r�qrj−r�

(
sj
s�

)
qd(sj−s�)

(
1 − qd)s�1{r�≤rj }

= (1 − q)

n−1∑
j=0

aj

j∑
�=0

(
rj
r�

)
(1 − q)r�qrj−r�

(
sj
s�

)
qd(sj−s�)

(
1 − qd)s�w�1{r�≤rj }

= (1 − q)

n/d−1∑
sj=0

d−1∑
rj=0

asj d+rj

×
sj∑

s�=0

rj∑
r�=0

(
rj
r�

)
(1 − q)r�qrj−r�

(
sj
s�

)
qd(sj−s�)

(
1 − qd)s�ws�d+r�,

where we used linearity of expectation and interchanged the order of summation. Observing
that the sums are binomial expansions we have that

E

(
n−1∑
�=0

b�w
�

)

= (1 − q)

n/d−1∑
sj=0

d−1∑
rj=0

adsj+rj

(
q + (1 − q)w

)rj (qd + (
1 − qd)

wd)sj

= (1 − q)

n−1∑
j=0

aj

(
q + (1 − q)w

)j (mod d)(
qd + (

1 − qd)
wd)� j

d
�
,

which proves the claim. �

RECONSTRUCTING TREES FROM TRACES 2803

PROOF OF LEMMA 5.2. Writing w = cos(θ) + i sin(θ), we see that∣∣(1 − qd)
wd + qd

∣∣2
= ∣∣(1 − qd)(

cos(θ) + i sin(θ)
)d + qd

∣∣2 = ∣∣(1 − qd)(
cos(dθ) + i sin(dθ)

) + qd
∣∣2

= ((
1 − qd)

cos(dθ) + qd)2 + ((
1 − qd)

sin(dθ)
)2

= (
1 − qd)2 cos2(dθ) + 2qd(

1 − qd)
cos(dθ) + q2d + (

1 − qd)2 sin2(dθ)

= (
1 − qd)2 + 2qd(

1 − qd)
cos(dθ) + q2d = 1 − 2qd + 2q2d + 2qd(

1 − qd)
cos(dθ)

= 1 − 2qd(
1 − qd)(

1 − cos(dθ)
)
.

Now using the fact that 1 − cos(y) ≤ y2/2, as well as the inequality 1 − y ≥ exp(−4y)

which holds for all y ∈ [0,0.9] (in our case indeed qd(1 − qd)d2θ2 ∈ [0,0.9] for all possible
parameter values), we obtain that∣∣(1 − qd)

wd + qd
∣∣2 = 1 − 2qd(

1 − qd)(
1 − cos(dθ)

) ≥ exp
(−4qd(

1 − qd)
d2θ2)

.

Taking a square root of the last line shows |(1 − qd)wd + qd | ≥ exp(−2qd(1 − qd)d2θ2).
Finally, the assumption that w ∈ γL implies that θ2 ≤ π2/L2 and the claim follows. �

PROOF OF LEMMA 5.4. We will consider the case of even and odd d separately, starting
with the cleaner case of when d is odd. Recall that we assume that d ≥ 20 and we choose
w0 = −q when d is odd and w0 = qei·π(d−1)/d when d is even. Let α := |q + (1 − q)w0| and
β := |qd + (1 − qd)wd

0 |.
When d is odd, α = q2, and also wd

0 = −qd , hence β = q2d . When d is even, w0 is
still chosen so that wd

0 = −qd and thus β = q2d , as in the case when d is odd. It is clear
geometrically that α ≥ q2, but we include the calculation as well:

α =
√(

Re
(
q + (1 − q)w0

))2 + (
Im

(
q + (1 − q)w0

))2

=
√(

q + (1 − q)q cos
(
π(d − 1)/d

))2 + (
(1 − q)q sin

(
π(d − 1)/d

))
)2

=
√

2q2(1 − q)
(
1 + cos

(
π(d − 1)/d

)) + q4 ≥
√

0 + q4 = q2,

where we use that cos(π(d −1)/d) ≥ −1. By our choice of β , we also see that αd ≥ q2d = β .
We are now ready to prove a lower bound on |Ã(w0)| which holds for both d even and d

odd. First, recalling the definition of Ã and the fact that wd
0 = −qd , we have that

Ã(w0) = (1 − q)

n−1∑
�=�∗

a�

(
q + (1 − q)w0

)� (mod d)(
qd + (

1 − qd)
wd

0
)� �

d
�−� �∗

d
�

= (1 − q)

n−1∑
�=�∗

a�

(
q + (1 − q)w0

)� (mod d)
q2d(� �

d
�−� �∗

d
�).

Now recall that |a�∗ | = 1 and thus the first term in the sum above (corresponding to index
� = �∗) is, in absolute value, equal to α�∗ (mod d). Since a� ∈ {−1,0,1} for all �, the rest of
the sum above (adding terms corresponding to indices �∗ + 1 ≤ � ≤ n − 1) is, in absolute
value, at most

n−1∑
�=�∗+1

α� (mod d)q2d(� �
d
�−� �∗

d
�) ≤

n−1∑
�=�∗+1

α� (mod d)αd(� �
d
�−� �∗

d
�) = α−d� �∗

d
�

n−1∑
�=�∗+1

α�

2804 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

≤ α−d� �∗
d

� α

1 − α
α�∗ = α

1 − α
α�∗ (mod d).

Putting these two bounds together we obtain that

∣∣Ã(w0)
∣∣ ≥ (1 − q)

(
α�∗ (mod d) − α

1 − α
α�∗ (mod d)

)
= (1 − q)

1 − 2α

1 − α
α�∗ (mod d).

When α is less than and bounded away from 1/2, then this bound is at least a positive constant
times α�∗ (mod d). Here, our choice of d and q becomes clear, as when d ≥ 20 and q ≤ .7 then
α ≤ .49. Since �∗ (mod d) < d , we have that α�∗ (mod d) ≥ q2d and the claim follows. �

PROOF OF LEMMA 5.5. First, we show that qd + (1 − qd)|w|d ≤ (q + (1 − q)|w|)d for
all w ∈ D and q ∈ (0,1). This is because

(
q + (1 − q)|w|)d =

d∑
j=0

(
d

j

)
qj (

(1 − q)|w|)d−j = qd +
d−1∑
j=0

(
d

j

)
qj (

(1 − q)|w|)d−j

≥ qd + |w|d
d−1∑
j=0

(
d

j

)
qj (1 − q)d−j = qd + |w|d(

1 − qd)
,

where we used the inequality |w|−j ≥ 1 which holds when |w| ≤ 1 and j ≥ 0. Combining
this inequality with the triangle inequality, we can show the desired upper bound for |Ã(w)|:

∣∣Ã(w)
∣∣ ≤

n−1∑
�=�∗

|a�|
∣∣q + (1 − q)w

∣∣� (mod d)∣∣qd + (
1 − qd)

wd
∣∣� �

d
�−� �∗

d
�

≤
n−1∑
�=�∗

(
q + (1 − q)|w|)� (mod d)(

qd + (
1 − qd)|w|d)� �

d
�−� �∗

d
�

≤
n−1∑
�=�∗

(
q + (1 − q)|w|)� (mod d)+d(� �

d
�−� �∗

d
�)

= (
q + (1 − q)|w|)−d� �∗

d
� n−1∑

�=�∗

(
q + (1 − q)|w|)�

≤ (
q + (1 − q)|w|)−d� �∗

d
� (q + (1 − q)|w|)�∗

1 − (q + (1 − q)|w|)
≤ 1

1 − (q + (1 − q)|w|) = 1

(1 − q)(1 − |w|) ,

where we used that q + (1 − q)|w| < 1 and �∗ − d��∗/d� ≥ 0. Note that the same upper
bound holds for |A(w)| as well, since |A(w)| ≤ |Ã(w)| for all w ∈ D. �

PROOF OF LEMMA 5.6. For the setup of this proof, it may be helpful to refer to Fig-
ure 12. x = eiπ/L lies on the disc DL, and so we can also write x as x = 1/2 + hL + eiθ0/2.
On the other hand, letting ε = 1 − |w| we see that |1/2 + hL + (1/2 + ε)eiθ | = 1. We will
assume that θ0 and θ are in the first quadrant, and we could obtain the same result when they
are both in the fourth quadrant by symmetry. Set the two moduli equal to each other:

(12)
∣∣1/2 + hL + 1/2eiθ0

∣∣2 = ∣∣1/2 + hL + (1/2 + ε)eiθ
∣∣2

RECONSTRUCTING TREES FROM TRACES 2805

Computing the left hand side of equation (12):∣∣1/2 + hL + 1/2eiθ0
∣∣2 = (

1/2 + hL + 1/2 cos(θ0)
)2 + (

1/2 sin(θ0)
)2

= (1/2 + hL)2 + 1/4 cos2(θ0) + 1/4 sin2 θ0 + (1/2 + hL) cos(θ0)

= (1/2 + hL)2 + 1/4 + (1/2 + hL) cos(θ0).

Computing the right hand side of equation (12):∣∣1/2 + hL + (1/2 + ε)eiθ
∣∣2 = (

1/2 + hL + (1/2 + ε) cos(θ)
)2 + (

(1/2 + ε) sin(θ)
)2

= (1/2 + hL)2 + (1/2 + ε)2 + 2(1/2 + hL)(1/2 + ε) cos(θ).

Setting the simplified terms equal we obtain that

1/4 + (1/2 + hL) cos(θ0) = 1/4 + ε2 + ε + 2(1/2 + hL)(1/2 + ε) cos(θ)

and so

(1/2 + hL)
(
cos(θ0) − cos(θ)

) = ε2 + ε + 2(1/2 + hL) · ε cos(θ) ≤ 4ε.

Recall that 0 < hL < 1/10 and 0 < θ0 < θ ≤ π/2. Then using standard identities,

(1/2 + hL)
(
cos(θ0) − cos(θ)

) ≤ 4ε,

2(1/2 + hL) · sin
(
(θ − θ0)/2

)
sin

(
(θ0 + θ)/2

)
) ≤ 4ε.

Using the fact that x2/4 ≤ sin(x/2) for 0 ≤ x ≤ π/2 and θ ≥ θ0, we see that

(θ − θ0)
2

4
· (θ0 + θ)2

4
≤ 4ε

and so

(θ − θ0)
4 ≤ 64ε = 64

(
1 − |w|),

which proves the claim. �

The following lemma and its proof are analogous to Lemma 3.1 in [34].

LEMMA 5.9. Let 0 < q < 1/2 be a constant. We have that

sup
w∈γL

∣∣Ã(w)
∣∣ ≥ exp(−c · dL) · n−L,

where c is a constant depending only on q .

PROOF. Let λ := supw∈γL
|Ã(w)| to simplify notation. Define the following analytic

function on D:

F(w) :=
L−1∏
j=0

Ã
(
w · e2πij/L)

.

Note that F(w) is entire, as it is the product of polynomials. We bound supw∈∂D |F(w)|
from above and below. For the upper bound, we use λ for one of the factors, and for the other
L−1 factors, we use the following trivial bound. For |w| ≤ 1, the moduli of both terms in the
factored generating function are at most 1, since |wd(1−qd)+qd | ≤ qd + (1−qd)|w|d ≤ 1,
and so for w ∈ ∂D we have that |Ã(w)| ≤ n. Putting these together, we obtain that |F(w)| ≤
nL−1λ for all w ∈ ∂D.

2806 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

To obtain a lower bound for supw∈∂D |F(w)| we use the maximum principle. Observe
that |F(0)| = |Ã(0)|L. Since F is analytic in D, by the maximum modulus principle it
must achieve modulus at least |Ã(0)|L on ∂D. Combining the upper and lower bounds on
supw∈∂D |F(w)|, we see that |Ã(0)|L ≤ nL−1λ and hence λ ≥ |Ã(0)|Ln−L.

It remains to lower bound |Ã(0)|. From the definition of Ã we have that

∣∣Ã(0)
∣∣ = (1 − q)q−d� �∗

d
�
∣∣∣∣∣
n−1∑
�=�∗

a�q
�

∣∣∣∣∣.
Recall from the definition of �∗ that |a�∗ | = 1 and that a� ∈ {−1,0,1} for all �. This implies
that ∣∣∣∣∣

n−1∑
�=�∗

a�q
�

∣∣∣∣∣ ≥ q�∗ −
n−1∑

�=�∗+1

q� = q�∗
(

1 − q − qn−�∗

1 − q

)
≥ 1 − 2q

1 − q
q�∗

.

Our assumption that q < 1/2 implies that this lower bound is positive. Putting the previous
two displays together and noting that �∗ − d��∗/d� ≤ d , we have that∣∣Ã(0)

∣∣ ≥ (1 − 2q)q�∗−d� �∗
d

� ≥ (1 − 2q)qd.

Thus we have that λ ≥ (1 − 2q)LqdLn−L, which proves the claim with constant c =
− log(q − 2q2). �

6. Conclusion. We introduced the problem of tree trace reconstruction and demon-
strated, for multiple classes of trees, that we can utilize the structure of trees to develop
more efficient algorithms than the current state-of-the-art for string trace reconstruction. We
provided new algorithms for reconstructing complete k-ary trees and spiders in two different
deletion models. For sufficiently small degree or large depth, we showed that a polynomial
number of traces suffice to reconstruct worst-case trees.

6.1. Future directions.

1. Improved bounds. Can our existing sample complexity bounds be improved? Our re-
sults leave open several questions for complete k-ary trees and spiders. Of particular interest
are (1) the TED model for complete k-ary trees with ω(1) ≤ k ≤ c log2 n and (2) spiders with
depth d = c log1/q n, c < 1; can we reconstruct with poly(n) traces in these cases?

2. General trees. We believe our results can extended to more general trees. In general,
we do not know if the trace complexity can be bounded simply in terms of the number of
nodes, the depth, and the min/max degree of the tree. What other tree structure must we take
into account for tight bounds?

3. Lower bounds. Lower bounds have recently been proven for string trace reconstruction
[10, 21]. When can analogous bounds be proven for trees? For example, is it possible to
reconstruct worst-case or average-case complete binary trees with polylog(n) traces?

4. Insertions and substitutions. We have focused on deletion channels, but insertions and
substitutions are well defined and relevant for tree edit distance applications. Similarly to
previous work, it would be worthwhile to understand the trace complexity for these edits.

5. Applications. Can insights from tree trace reconstruction be helpful in applications, for
instance in computational biology? In particular, DNA sequencing and synthesis techniques
are rapidly evolving, and the future statistical error correction techniques will likely be differ-
ent from the ones used currently. For instance, Anavy et al. [3] recently demonstrated a new
DNA storage method using composite DNA letters. Similarly, future DNA synthesis tech-
niques may use physical constraints to enforce structure on the written bases; this could take
the form of a two-dimensional array or a tree as we study.

RECONSTRUCTING TREES FROM TRACES 2807

APPENDIX

REMARK 4 (Root node is fixed). Our models implicitly enforce the property that the tree
traces are connected (not forests). This is consistent with the string case, because traces are
never disjoint subsequences. Moreover, in the TED model, having connected traces justifies
the assumption that the root is never deleted. If the root were deleted with probability q , then
the preservation of the root could be achieved by sampling O(1/q) times more traces and
only keeping those that are connected. In the left-propagation model, our algorithms either
already reconstruct the root node as written, or could be easily altered to learn the root. This
may be least obvious for spiders, but here we consider the root to be in the first path and claim
that since the paths have monotonically decreasing length, our proof still holds.

It is easy to imagine other models where this assumption would not work, such as (i) allow-
ing disconnected traces, (ii) deleting edges or subtrees, or (iii) sampling random subgraphs
or graph minors. We leave such investigations as future work.

Trace reconstruction with censoring. We analyze here a variant of string trace recon-
struction where each trace is independently “censored” with some probability and instead of
the actual trace we receive an empty string. In other words, we have to reconstruct the orig-
inal string from a random sample of the traces. Here we reduce this problem to the original
string trace reconstruction problem.

Let x ∈ {0,1}n denote the original string that we aim to reconstruct. Let ∅ denote the
empty string, let S≥1 := ⋃

k≥1{0,1}k denote the set of binary sequences of finite positive
length, and let S := ∅ ∪ S≥1 denote the union of this set with the empty string. Let Px,q

denote the probability measure on S that we obtain by passing x through the deletion channel
with deletion probability q . That is, if Y is a random (potentially empty) string that is obtained
by passing x through the deletion channel, then Px,q(y) = Pr(Y = y) for every y ∈ S . Now,
conditionally on Y, define Z as follows: with probability γ , let Z = ∅, and with probability
1 − γ , let Z = Y. That is, Pr(Z = ∅|Y = y) = γ = 1 − Pr(Z = y|Y = y). We call Z a
censored trace and γ the censoring probability. Let Px,q,γ denote the distribution of Z on S .

While in the string trace reconstruction problem we aim to reconstruct x from i.i.d. traces
Y1, . . . ,Yk from Px,q , in the trace reconstruction problem with censoring we aim to recon-
struct x from i.i.d. censored traces Z1, . . . ,Zk from Px,q,γ . Recall that T (n, δ) denotes the
minimum number of traces needed to reconstruct a worst-case string on n bits with probabil-
ity at least 1 − δ, where the dependence on the deletion probability q is left implicit.

LEMMA A.1. Let T cens
γ (n, δ) denote the minimum number of traces needed to re-

construct a worst-case string on n bits with probability at least 1 − δ from i.i.d. cen-
sored traces from the deletion channel with deletion probability q and censoring prob-
ability γ . If lim infn→∞ 1

n
log δ > −∞, then for every ε > 0 we have that T cens

γ (n, δ) ≤
1+ε

(1−qn)(1−γ)
T (n, (1 − ε)δ) for large enough n.

PROOF. First, note that empty strings contain no information, so reconstruction only
uses nonempty traces. Next, observe that conditionally on outputting a nonempty trace, the
deletion channel and the deletion channel with censoring have the same distribution. That is,
if x is the original string, Y is a trace obtained by passing x through the deletion channel, and
Z is a censored trace, then Pr(Y = y|Y �=∅) = Pr(Z = y|Z �= ∅) for every y ∈ S≥1.

Suppose that we have

T := 1 + ε

(1 − qn)(1 − γ)
T

(
n, (1 − ε)δ

)

2808 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

censored traces and let T ′ denote the number of these censored traces that are not empty.
By our first two observations we have that if T ′ ≥ T (n, (1 − ε)δ), then we can re-
construct the original string (no matter what it was) with probability at least 1 − (1 −
ε)δ. By construction we have that T ′ ∼ Bin(T , (1 − qn)(1 − γ)) and thus ET ′ = (1 +
ε)T (n, (1 − ε)δ). Hence by a Chernoff bound we have that Pr(T ′ < T (n, (1 − ε)δ)) ≤
exp(− ε2

2(1+ε)2ET ′) = exp(− ε2

2(1+ε)
T (n, (1−ε)δ)). Since T (n, (1−ε)δ) = �̃(n1.25) (see [21])

and lim infn→∞ 1
n

log δ > −∞, it follows that

exp
(
− ε2

2(1 + ε)
T

(
n, (1 − ε)δ

)) ≤ εδ

for large enough n. The probability that we cannot reconstruct the original string is at most δ.
�

Note that this result is essentially optimal up to constant factors (depending on q , γ , and δ).
Note also that the range of δ for which the statement holds can be relaxed (this sufficient
condition was chosen for its simplicity).

Acknowledgments. We thank Nina Holden for helpful discussions relating to Lem-
ma 5.3, and Bichlien Nguyen and Karin Strauss for pointing us to connections on branched
DNA and recent work in this area. We also thank Alyshia Olsen for help designing the figures.
Finally, we thank Tatiana Brailovskaya and an anonymous referee for their careful reading
of the paper and their numerous helpful questions and suggestions that helped improve the
paper.

An extended abstract of this paper appears in the Proceedings of the 32nd Conference on
Learning Theory (COLT), 2019 [13].

Funding. The research of S.D. was supported by NSF CAREER Grant 1651861 and the
David & Lucile Packard Foundation. The research of M.Z.R. was supported in part by NSF
Grant DMS-1811724.

REFERENCES

[1] ABRAHAO, B., CHIERICHETTI, F., KLEINBERG, R. and PANCONESI, A. (2013). Trace complexity of
network inference. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD) 491–499. ACM, New York.

[2] AHLFORS, L. V. (1953). Complex Analysis. An Introduction to the Theory of Analytic Functions of One
Complex Variable. McGraw-Hill Book Company, Inc., New York-Toronto-London. MR0054016

[3] ANAVY, L., VAKNIN, I., ATAR, O., AMIT, R. and YAKHINI, Z. (2019). Data storage in DNA with fewer
synthesis cycles using composite DNA letters. Nat. Biotechnol. 37 1229–1236. https://doi.org/10.1038/
s41587-019-0240-x

[4] ANDONI, A., DASKALAKIS, C., HASSIDIM, A. and ROCH, S. (2012). Global alignment of molecular
sequences via ancestral state reconstruction. Stochastic Process. Appl. 122 3852–3874. MR2971717
https://doi.org/10.1016/j.spa.2012.08.004

[5] BAN, F., CHEN, X., FREILICH, A., SERVEDIO, R. A. and SINHA, S. (2019). Beyond trace reconstruction:
Population recovery from the deletion channel. In Proceedings of the 60th Annual Symposium on
Foundations of Computer Science (FOCS) 745–768. IEEE, New York.

[6] BATU, T., KANNAN, S., KHANNA, S. and MCGREGOR, A. (2004). Reconstructing strings from random
traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms 910–
918. ACM, New York. MR2290981

[7] BILLE, P. (2005). A survey on tree edit distance and related problems. Theoret. Comput. Sci. 337 217–239.
MR2141222 https://doi.org/10.1016/j.tcs.2004.12.030

[8] BORWEIN, P. and ERDÉLYI, T. (1997). Littlewood-type problems on subarcs of the unit circle. Indiana
Univ. Math. J. 46 1323–1346. MR1631600 https://doi.org/10.1512/iumj.1997.46.1435

http://www.ams.org/mathscinet-getitem?mr=0054016
https://doi.org/10.1038/s41587-019-0240-x
http://www.ams.org/mathscinet-getitem?mr=2971717
https://doi.org/10.1016/j.spa.2012.08.004
http://www.ams.org/mathscinet-getitem?mr=2290981
http://www.ams.org/mathscinet-getitem?mr=2141222
https://doi.org/10.1016/j.tcs.2004.12.030
http://www.ams.org/mathscinet-getitem?mr=1631600
https://doi.org/10.1512/iumj.1997.46.1435
https://doi.org/10.1038/s41587-019-0240-x

RECONSTRUCTING TREES FROM TRACES 2809

[9] CEZE, L., NIVALA, J. and STRAUSS, K. (2019). Molecular digital data storage using DNA. Nat. Rev. Genet.
20 456–466. https://doi.org/10.1038/s41576-019-0125-3

[10] CHASE, Z. (2019). New lower bounds for trace reconstruction. Preprint. Available at https://arxiv.org/abs/
1905.03031.

[11] CHERAGHCHI, M., GABRYS, R., MILENKOVIC, O. and RIBEIRO, J. (2020). Coded trace reconstruction.
IEEE Trans. Inf. Theory 66 6084–6103. MR4173526 https://doi.org/10.1109/TIT.2020.2996377

[12] CHURCH, G. M., GAO, Y. and KOSURI, S. (2012). Next-generation digital information storage in DNA.
Science 337 1628.

[13] DAVIES, S., RÁCZ, M. Z. and RASHTCHIAN, C. (2019). Reconstructing trees from traces. In Proceedings
of the 32nd Conference on Learning Theory (COLT) 961–978.

[14] DE ANINDYA, A., O’DONNELL, R. and SERVEDIO, R. A. (2017). Optimal mean-based algorithms for
trace reconstruction. In STOC’17—Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing 1047–1056. ACM, New York. MR3678250 https://doi.org/10.1145/3055399.
3055450

[15] DE ANINDYA, A., O’DONNELL, R. and SERVEDIO, R. A. (2019). Optimal mean-based algorithms
for trace reconstruction. Ann. Appl. Probab. 29 851–874. MR3910019 https://doi.org/10.1214/
18-AAP1394

[16] DUDÍK, M. and SCHULMAN, L. J. (2003). Reconstruction from subsequences. J. Combin. Theory Ser. A
103 337–348. MR1996071 https://doi.org/10.1016/S0097-3165(03)00103-1

[17] ERLICH, Y. and ZIELINSKI, D. (2017). DNA fountain enables a robust and efficient storage architecture.
Science 355 950–954. https://doi.org/10.1126/science.aaj2038

[18] GARNETT, J. B. and MARSHALL, D. E. (2005). Harmonic Measure. New Mathematical Monographs 2.
Cambridge Univ. Press, Cambridge. MR2150803 https://doi.org/10.1017/CBO9780511546617

[19] GOLDMAN, N., BERTONE, P., CHEN, S., DESSIMOZ, C., LEPROUST, E. M., SIPOS, B. and BIRNEY, E.
(2013). Towards practical, high-capacity, low-maintenance information storage in synthesized DNA.
Nature 494 77–80.

[20] HARTUNG, L., HOLDEN, N. and PERES, Y. (2018). Trace reconstruction with varying deletion probabil-
ities. In 2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics
(ANALCO) 54–61. SIAM, Philadelphia, PA. MR3773635 https://doi.org/10.1137/1.9781611975062.6

[21] HOLDEN, N. and LYONS, R. (2020). Lower bounds for trace reconstruction. Ann. Appl. Probab. 30 503–
525. MR4108114 https://doi.org/10.1214/19-AAP1506

[22] HOLDEN, N., PEMANTLE, R. and PERES, Y. (2018). Subpolynomial trace reconstruction for random strings
and arbitrary deletion probability. In Proceedings of the 31st Conference on Learning Theory (COLT)
1799–1840.

[23] HOLENSTEIN, T., MITZENMACHER, M., PANIGRAHY, R. and WIEDER, U. (2008). Trace reconstruction
with constant deletion probability and related results. In Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms 389–398. ACM, New York. MR2487606

[24] KARAU, P. and TABARD-COSSA, V. (2018). Capture and translocation characteristics of short branched
DNA labels in solid-state nanopores. ACS Sens 3 1308–1315. https://doi.org/10.1021/acssensors.
8b00165

[25] KELLY, P. J. (1957). A congruence theorem for trees. Pacific J. Math. 7 961–968. MR0087949
[26] KRASIKOV, I. and RODITTY, Y. (1997). On a reconstruction problem for sequences. J. Combin. Theory Ser.

A 77 344–348. MR1429086 https://doi.org/10.1006/jcta.1997.2732
[27] KRISHNAMURTHY, A., MAZUMDAR, A., MCGREGOR, A. and PAL, S. (2019). Trace reconstruction: Gen-

eralized and parameterized. In 27th Annual European Symposium on Algorithms. LIPIcs. Leibniz Int.
Proc. Inform. 144 Art. No. 68, 25. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern. MR4007907

[28] LAURI, J. and SCAPELLATO, R. (2016). Topics in Graph Automorphisms and Reconstruction, 2nd ed. Lon-
don Mathematical Society Lecture Note Series 432. Cambridge Univ. Press, Cambridge. MR3496604
https://doi.org/10.1017/CBO9781316669846

[29] LEVENSHTEIN, V. I. (2001). Efficient reconstruction of sequences from their subsequences or superse-
quences. J. Combin. Theory Ser. A 93 310–332. MR1805300 https://doi.org/10.1006/jcta.2000.3081

[30] MARANZATTO, T. J. (2020). Tree trace reconstruction: Some results. Thesis, New College of Florida.
[31] MCGREGOR, A., PRICE, E. and VOROTNIKOVA, S. (2014). Trace reconstruction revisited. In Algorithms—

ESA 2014. Lecture Notes in Computer Science 8737 689–700. Springer, Heidelberg. MR3253172
https://doi.org/10.1007/978-3-662-44777-2_57

[32] MITZENMACHER, M. (2009). A survey of results for deletion channels and related synchronization chan-
nels. Probab. Surv. 6 1–33. MR2525669 https://doi.org/10.1214/08-PS141

[33] MOSSEL, E. and ROSS, N. (2019). Shotgun assembly of labeled graphs. IEEE Trans. Netw. Sci. Eng. 6
145–157. MR3969756 https://doi.org/10.1109/TNSE.2017.2776913

https://doi.org/10.1038/s41576-019-0125-3
https://arxiv.org/abs/1905.03031
http://www.ams.org/mathscinet-getitem?mr=4173526
https://doi.org/10.1109/TIT.2020.2996377
http://www.ams.org/mathscinet-getitem?mr=3678250
https://doi.org/10.1145/3055399.3055450
http://www.ams.org/mathscinet-getitem?mr=3910019
https://doi.org/10.1214/18-AAP1394
http://www.ams.org/mathscinet-getitem?mr=1996071
https://doi.org/10.1016/S0097-3165(03)00103-1
https://doi.org/10.1126/science.aaj2038
http://www.ams.org/mathscinet-getitem?mr=2150803
https://doi.org/10.1017/CBO9780511546617
http://www.ams.org/mathscinet-getitem?mr=3773635
https://doi.org/10.1137/1.9781611975062.6
http://www.ams.org/mathscinet-getitem?mr=4108114
https://doi.org/10.1214/19-AAP1506
http://www.ams.org/mathscinet-getitem?mr=2487606
https://doi.org/10.1021/acssensors.8b00165
http://www.ams.org/mathscinet-getitem?mr=0087949
http://www.ams.org/mathscinet-getitem?mr=1429086
https://doi.org/10.1006/jcta.1997.2732
http://www.ams.org/mathscinet-getitem?mr=4007907
http://www.ams.org/mathscinet-getitem?mr=3496604
https://doi.org/10.1017/CBO9781316669846
http://www.ams.org/mathscinet-getitem?mr=1805300
https://doi.org/10.1006/jcta.2000.3081
http://www.ams.org/mathscinet-getitem?mr=3253172
https://doi.org/10.1007/978-3-662-44777-2_57
http://www.ams.org/mathscinet-getitem?mr=2525669
https://doi.org/10.1214/08-PS141
http://www.ams.org/mathscinet-getitem?mr=3969756
https://doi.org/10.1109/TNSE.2017.2776913
https://arxiv.org/abs/1905.03031
https://doi.org/10.1145/3055399.3055450
https://doi.org/10.1214/18-AAP1394
https://doi.org/10.1021/acssensors.8b00165

2810 S. DAVIES, M. Z. RÁCZ AND C. RASHTCHIAN

[34] NAZAROV, F. and PERES, Y. (2017). Trace reconstruction with exp(O(n1/3)) samples. In STOC’17—
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing 1042–1046. ACM,
New York. MR3678249

[35] ORGANICK, L., ANG, S. D., CHEN, Y.-J., LOPEZ, R., YEKHANIN, S., MAKARYCHEV, K., RACZ, M. Z.,
KAMATH, G., GOPALAN, P. et al. (2018). Random access in large-scale DNA data storage. Nat.
Biotechnol. 36 242–248.

[36] ULAM, S. M. (1960). A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied
Mathematics, No. 8. Interscience Publishers, New York. MR0120127

[37] VISWANATHAN, K. and SWAMINATHAN, R. (2008). Improved string reconstruction over insertion-deletion
channels. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms
399–408. ACM, New York. MR2487607

[38] YAZDI, S. H. T., GABRYS, R. and MILENKOVIC, O. (2017). Portable and error-free DNA-based data
storage. Sci. Rep. 7 5011.

[39] YAZDI, S. H. T., KIAH, H. M., GARCIA-RUIZ, E., MA, J., ZHAO, H. and MILENKOVIC, O. (2015).
DNA-based storage: Trends and methods. IEEE Transactions on Molecular, Biological and Multi-
Scale Communications 1 230–248.

[40] ZHANG, K. and SHASHA, D. (1989). Simple fast algorithms for the editing distance between trees and
related problems. SIAM J. Comput. 18 1245–1262. MR1025472 https://doi.org/10.1137/0218082

http://www.ams.org/mathscinet-getitem?mr=3678249
http://www.ams.org/mathscinet-getitem?mr=0120127
http://www.ams.org/mathscinet-getitem?mr=2487607
http://www.ams.org/mathscinet-getitem?mr=1025472
https://doi.org/10.1137/0218082

	Introduction
	Related work
	Previous results on string trace reconstruction
	Other variants of trace reconstruction
	Other graph reconstruction models

	Our results
	TED model for complete k-ary trees
	Left-propagation model for complete k-ary trees
	Spiders
	Average-case labels for trees

	Overview of TED deletion algorithms
	Overview of left-propagation algorithms
	Overview of spider techniques
	Outline

	Preliminaries
	Standard tree deﬁnitions
	k-ary tree algorithm preliminaries
	Canonical subtrees of traces

	Reconstructing trees, TED deletion model
	Proof of Theorem 1.3 concerning large degree trees
	The FindPaths algorithm
	The reconstruction algorithm: Estimating the labels of GX(j) for each j inJd-1
	Finishing the proof of Theorem 1.3

	Proof of Theorem 1.4 concerning arbitrary degree trees
	Analyzing and using stable traces
	Completing the proof of Theorem 1.4

	Reconstructing trees, left-propagation model
	Proof of Theorem 1.5 concerning large degree trees
	Proof of Theorem 1.6 concerning arbitrary degree trees
	Recovering the labels for subtrees
	Completing the proof of Theorem 1.6

	Reconstructing spiders
	Spider algorithm preliminaries
	Proof of Theorem 1.7 concerning (n,d)-spiders with small d
	Proof of Lemma 5.3
	Bounds for spiders from string trace reconstruction
	Large depth (n,d)-spiders
	Small depth (n,d)-spiders

	Additional proofs and remarks for reconstructing spiders

	Conclusion
	Future directions

	Appendix
	Trace reconstruction with censoring

	Acknowledgments
	Funding
	References

