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ABSTRACT: We study how the spectral gap of the normalized Laplacian of a random graph changes
when an edge is added to or removed from the graph. There are known examples of graphs where,
perhaps counter-intuitively, adding an edge can decrease the spectral gap, a phenomenon that is
analogous to Braess’s paradox in traffic networks. We show that this is often the case in random
graphs in a strong sense. More precisely, we show that for typical instances of Erdős-Rényi random
graphs G(n, p) with constant edge density p ∈ (0, 1), the addition of a random edge will decrease
the spectral gap with positive probability, strictly bounded away from zero. To do this, we prove a
new delocalization result for eigenvectors of the Laplacian of G(n, p), which might be of independent
interest. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 584–611, 2017
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1. INTRODUCTION

The spectral gap of the Laplacian of a graph is an important quantity that relates to conduc-
tance properties of a graph. For instance, various notions of mixing time of a random walk
on a graph are intimately related to the inverse of the spectral gap, which is known as the
relaxation time (see, e.g., [13]). Generally speaking, one expects graphs with more edges
to have better conductance properties, and, accordingly, a larger spectral gap. However,
perhaps counter-intuitively, there are examples where adding an edge to a graph decreases
its spectral gap. For example, in the barbell graph (two expanders connected by a single
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edge), adding an edge within either one of the expanders will decrease the spectral gap,
since this additional edge makes it harder for a random walker to go from one expander to
the other.

This is analogous to Braess’s paradox in traffic networks, which states that the addition of
a new road can increase congestion [2,3]. Since its discovery in 1968, this phenomenon has
been widely studied. There are many works that give analytic conditions for when adding
an edge does or does not yield an improvement in congestion (see, e.g., [21]), and recently
there have been several works studying the prevalence of this phenomenon in random
networks [6, 7, 26]. These works suggest that Braess’s paradox is a common occurrence in
many settings.

One of the two objectives of this paper is to study how the spectral gap of the normalized
Laplacian of an Erdős-Rényi random graph G(n, p) changes when an edge is added to the
graph. We show that for fixed p ∈ (0, 1), the addition of a random edge will decrease the
spectral gap with positive probability. Our main finding is thus that the counter-intuitive
phenomenon that is analogous to Braess’s paradox holds in a strong sense. Our proof of this
result relies on a certain kind of delocalization of the second eigenvector of the normalized
Laplacian of G(n, p). Showing that this occurs and exploring further delocalization results
is the second objective of the paper.

1.1. A Conjecture of F. Chung and Our Related Results

Our paper is motivated by a question of Fan Chung; to state her conjecture and our results
precisely, we first introduce some notation. For a graph G = (V , E), let A ≡ AG denote
its adjacency matrix, and let D ≡ DG denote the diagonal matrix with the degrees of the
corresponding vertices on the diagonal. The (combinatorial) Laplacian of G is defined as
L ≡ LG = D − A, and the symmetric normalized Laplacian is defined as L ≡ LG =
D−1/2LD−1/2 = I − Â, where Â = D−1/2AD−1/2. Let λ1 (M) ≤ λ2 (M) ≤ · · · ≤ λn (M)

denote the eigenvalues of an n × n symmetric matrix M in increasing order. It is easy to
see that λ1 (LG) = λ1 (LG) = 0. The value of λ2 (LG) is called the spectral gap of the
normalized Laplacian, or just the spectral gap for short.

For a graph G, let r− (G) denote the fraction of edges e such that if the edge e were
to be removed from the graph, the spectral gap decreases or remains unchanged; also let
r+ (G) := 1−r− (G), which is the fraction of edges such that if this edge were to be removed
from the graph, the spectral gap increases. One might first guess that for a reasonable graph
G, r− (G) is close to 1, i.e., that the removal of a single edge will decrease the spectral gap for
most edges. However, based on empirical evidence to the contrary, Fan Chung conjectured
that this is not the case for Erdős-Rényi random graphs.

Conjecture 1.1 (Chung, 2014). Let p ∈ (0, 1) be fixed. There exists a constant c =
c (p) > 0 such that

P
[
r+ (G (n, p)) ≥ c

]→ 1

as n → ∞.

Remark 1.2. This question is only interesting for the spectral gap of the symmetric
normalized Laplacian. The combinatorial Laplacian can be written as a sum over edges of
the graph of appropriate positive semidefinite matrices. Therefore when removing an edge
from a graph, the spectral gap of the combinatorial Laplacian cannot increase.
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In a similar vein, it is natural to ask how the spectral gap changes when an edge is added
between two nodes that were not previously connected. For a graph G one can define the
quantities a+ (G) and a− (G) as the proportion of “non-edges” (pairs of points not connected
by an edge) for which adding an edge in its place increases or does not increase the spectral
gap, respectively. The main result of this paper mirrors Chung’s conjecture in the case of
adding a single edge to a random graph.

Theorem 1.3. Let p ∈ (0, 1) be fixed. Then for any constant η > 0 we have

P
[
a− (G (n, p)) ≥ 1/8 − η

]→ 1

as n → ∞.

Remark 1.4. The normalized adjacency matrix D−1/2AD−1/2 and the Markov random
walk operator D−1A have identical spectra, so the result of Theorem 1.3 applies to the
spectral gap of D−1A as well.

As a corollary, we get the following weaker version of Chung’s conjecture.

Corollary 1.5. Let p ∈ (0, 1) be fixed. There exists a constant c = c (p) > 0 such that

lim sup
n→∞

P
[
r+ (G (n, p)) ≥ c

] ≥ c.

Proof. Let G = (V , E) have the distribution G(n, p), let G− be generated by removing
a random edge from G, chosen uniformly from E, and let G+ be generated by adding an
edge to G chosen uniformly from

(V
2

) \ E. We first claim that limn→∞ TV(G−, G) = 0,
where TV denotes total variation distance. Indeed, by symmetry, it is enough to show that
limn→∞ TV(|E| − 1, |E|) = 0, and note that |E| is binomially distributed with parameters(n

2

)
and p, so the claim follows from a standard calculation which we omit. Consequently,

it follows that
lim

n→∞ TV((G−, G), (G, G+)) = 0. (1)

By Theorem 1.3 we have (taking η = 1/16) that lim infn→∞ P [λ2(G+) ≤ λ2(G)] ≥
1
16 . Then by (1) we also have that lim infn→∞ P [λ2(G) ≤ λ2(G−)] ≥ 1

16 , which then
immediately implies the claim.

Remark 1.6. While we state our results for constant p ∈ (0, 1), our proofs show that they
hold also when p = n−ε for some small ε > 0. We did not try to optimize the dependence
on p, and it is possible that a similar approach could show that these results hold for smaller
p as well.

1.2. Delocalization of Eigenvectors

It turns out that the proof of Theorem 1.3 can be reduced to a question about the second
eigenvector of the normalized Laplacian of G(n, p). While the eigenvalues of matrices asso-
ciated with G(n, p) are very well understood (see, for example, [4, 5] and the references
therein), little is known about the corresponding eigenvectors; we have collected the main
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known results in Section 2. It is widely believed that these eigenvectors are typically delo-
calized, in the sense that most of their mass is concentrated on entries whose magnitudes
are roughly of the same order. There are several ways of formalizing this intuition.

Perhaps the most common approach is to bound the �q norms of eigenvectors.1 If v is
an eigenvector of a matrix M with ‖v‖2 = 1, then a lower bound on its �q norm is given by
the relation between the norms: for q ≥ 2, we have ‖v‖q ≥ n−1/2+1/q ‖v‖2 = n−1/2+1/q. If it
can be shown that with high probability ‖v‖q is at most n−1/2+1/q times a polylogarithmic
factor of n, then the eigenvector v is said to be delocalized in the �q sense.

Recently there have been several works that have shown delocalization of eigenvectors of
AG(n,p) in the sense above. In particular, Erdős et al. [9] showed that there exists a constant C

such that for every fixed p ∈ (0, 1) we have ‖v‖∞ ≤ (log(n))C√
n for all unit eigenvectors v with

high probability. See also [1, 8, 25]. More widely, the �q-delocalization of eigenvectors of
Wigner matrices and more general classes of random matrices has been intensively studied
in the recent past, see, for example, [18, 22–24].

However, in order to prove Theorem 1.3, we require a complementary sense of delo-
calization of the second eigenvector of LG(n,p). Namely, we need to show that a constant
fraction of the entries of the eigenvector have non-negligible magnitude of approximately
the same order.2 While some results in this vein are known for the first eigenvector of the
adjacency matrix [15] (and follow in a straightforward manner from bounds on the degrees
for the first eigenvector of the symmetric normalized Laplacian), to our knowledge there
are no previous results about the remainder of the spectrum. We obtain the following result.

Theorem 1.7. Let v2 denote the second unit eigenvector ofLG(n,p). For every fixed p ∈ (0, 1)

and fixed η ∈ (0, 1/2) there exists a constant C = C (p, η) such that

P

[
1

n
#

{
i ∈ [n] : |v2 (i)| ≥ 1√

n (log (n))C

}
≥ 1/2 − η

]
→ 1,

as n → ∞.

Remark 1.8. Our proof of this result also shows that the same conclusion holds for any
eigenvector v of LG(n,p) for which the corresponding eigenvalue λ satisfies the inequality
|1 − λ| ≥ (1 − λ2

(
LG(n,p)

))
/ log (n). We omit the details.

Remark 1.9. The result above also holds for the normalized adjacency matrix
D−1/2AD−1/2 of G (n, p), since the eigenvectors of the normalized Laplacian and those
of the normalized adjacency matrix are the same. Also, the result holds for the eigenvectors
of the Markov random walk operator D−1A, as D−1A is equal to D−1/2AD−1/2 conjugated
by D1/2, which concentrates well to a multiple of the identity in G(n, p).

Remark 1.10. Theorem 1.7 does not follow from the delocalization results in the �q

sense, since these do not rule out the possibility that the mass of the vector is concentrated
on a sublinear number of coordinates. Similarly, Theorem 1.7 does not imply delocalization
results in the �q sense, as the theorem does not exclude the possibility that a single entry

1We use the notation �q instead of the classical �p in order to avoid confusion with the edge probability p.
2Results pertaining to �q-delocalization cannot suffice for this, as they do not rule out the possibility that many
coordinates are very small—see Remark 1.10.
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contains a constant fraction of the mass, with the remaining mass spread equally on all
coordinates.

Before proving Theorem 1.7, as a warm-up we first prove an analogous result for the
(unnormalized) adjacency matrix AG of G = G(n, p), for all eigenvectors vj(AG) with j > 1
(see Section 4.2.1). This proof contains most of the main ideas of the proof for the normalized
case, but is somewhat simpler.

Shortly before the writing of this manuscript was completed, we discovered that Rudelson
and Vershynin independently proved a delocalization result of the same type for matrices
with independent entries [20]. Their results are stronger, in the sense that they apply to a
(1 − o(1))-fraction of the entries; however they cannot be applied to Chung’s conjecture
because the normalization of the Laplacian introduces dependencies between the entries. On
a related note, Nguyen, Tao and Vu very recently proved a related result on non-degeneration
of eigenvectors for a certain class of matrices with independent entries [16].

1.3. Approach

1.3.1. Decreasing Spectral Gap. We first obtain a general sufficient condition under
which the addition of an edge causes the spectral gap to decrease. Given a graph G, and
another graph G+ obtained from G by adding a single edge, consider the second eigenvector
v2 of the normalized Laplacian LG, and let v′

2 be the projection of v2 away from the top
eigenvector of LG+ . If v′

2 has a smaller Rayleigh quotient in G+ than in G, then the spectral
gap decreases. This event can be explicitly expressed using v2, λ2 (LG), and the degrees
of vertices in G, giving an explicit sufficient condition for the spectral gap to decrease in
general graphs. See Lemma 3.2 for details.

Next, we specialize this general condition to Erdős-Rényi random graphs, see Proposi-
tion 3.1. Simple calculations reveal that a sufficient condition for the spectral gap to decrease
with constant probability is to have a constant fraction of entries of v2 have the same order
of magnitude. Thus a delocalization result of the type previously described would complete
the proof.

1.3.2. Delocalization. For our definition of delocalization, it suffices to show that a
vector with too many small entries cannot be the second eigenvector of the symmetric
normalized adjacency matrix Â = ÂG(n,p) for a typical instance of G(n, p). To this end,
suppose that a vector v with ‖v‖2 = 1 has many of its coordinates smaller in absolute value
than δ � n−1/2, and that v is also the second eigenvector of Â. For a typical instance of
G(n, p), it is known that the second largest eigenvalue of Â is �(n−1/2). Intuitively, each entry
of Âv is close to a sum of Bernoulli random variables scaled by the entries of v. If v is the
second eigenvector, then for all of its small entries, the Bernoulli sum must land in an interval
of size δ × �(n−1/2) and for this event to occur simultaneously for all of the many small
entries is very unlikely. To formalize this fact we use a standard Littlewood-Offord-type
estimate, together with a result of Rudelson and Vershynin.

By taking a suitable enumeration of discrete approximations for the eigenvector (very
roughly speaking, an ε-net in the subset of “localized” eigenvectors), one can make sure
that the above holds with a probability small enough so that a union bound can be used to
show that none of these approximations are in fact likely on a typical instance of the graph.

After collecting some auxiliary results in Section 4.1, we prove our delocalization
results in Section 4.2. We start by proving delocalization of eigenvectors for the adjacency
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matrix AG(n,p) in Section 4.2.1 and then turn to the normalized adjacency matrix ÂG(n,p) in
Section 4.2.2.

1.4. Further Notation

Let 1 denote the n-dimensional vector with all entries equal to 1 and let �1 denote the n-
dimensional unit vector whose every coordinate is equal to 1/

√
n. The dimension n will

be implicit in the context of appearance, and will not be explicitly noted. For S ⊆ [n], �1S

denotes the |S|-dimensional unit vector whose every coordinate is equal to 1/
√|S| (and

whose coordinates are identified with S). For a vector v ∈ Rn, by ‖v‖ ≡ ‖v‖2 we denote
its standard Euclidean norm. For a vector v ∈ Rn, and a real number r ∈ R, we denote by
B (v, r) the Euclidean ball of radius r around v.

For a graph G = (V , E) and a vertex v ∈ V , let dv denote the degree of v if the graph
G is clear from context. Recall our notation for various matrices associated with G at the
beginning of Section 1.1; for all such matrices, we omit the subscript when the graph G is
clear from context.

We denote the eigenvalues of an n × n symmetric matrix M by {λi (M)}n
i=1. For Lapla-

cian matrices we order the eigenvalues from smallest to largest (as in Section 1.1), but
for adjacency matrices it is more natural to order the eigenvalues from largest to smallest:
λ1 (M) ≥ λ2 (M) ≥ · · · ≥ λn (M). In the rest of the paper we therefore follow this conven-
tion. Let vG

1 denote the normalized eigenvector corresponding to λ1(̂AG) and λ1(LG), and
recall that vG

1 ∝ D1/2
G

�1.
A sequence of events {En} is said to hold asymptotically almost surely if limn→∞ P(En) =

1, and is said to hold with high probability if for every constant c > 0 there exists nc > 0
such that for all n > nc one has P(En) > 1 − n−c. An event E holds almost surely if
P(E) = 1.

2. PRELIMINARIES: TYPICAL INSTANCES OF G(n, p)

In our proof we use several properties of a “typical” instance of G(n, p). We first list these
properties, and then show that each one holds with high probability over G(n, p).

Definition 2.1. We say that a graph G = (V , E) is a typical instance of G(n, p), denoted
by G ∈ Tn,p, if the following properties hold:

1. The degrees of all vertices are close to their expectation, in the following specific
sense:

∀v ∈ V , np − log(n) · √
np ≤ dv ≤ np + log(n) · √

np,

and furthermore the sum of all degrees is also close to its expectation in the following
specific sense:

n2p − n log (n) ≤
∑
v∈V

dv ≤ n2p + n log (n) .

2. The eigenvalues of the normalized and unnormalized adjacency matrices are not far
from their expectations, in the following specific sense:

np − log(n) · √
n ≤ λ1(A) ≤ np + log(n) · √

n,

|λi(A)| ≤ 3
√

np(1 − p) for 2 ≤ i ≤ n,

Random Structures and Algorithms DOI 10.1002/rsa



590 ELDAN, RÁCZ, AND SCHRAMM

and

λ1(̂A) = 1,
∣∣λi (̂A)
∣∣ ≤ 8√

np
for 2 ≤ i ≤ n.

3. For every subset of vertices S ⊆ V, we have∣∣∣|E(S)| − p

( |S|
2

)∣∣∣ ≤ n3/2

where E(S) denotes the edges whose endpoints both lie in S.

We denote by P the distribution of an Erdős-Rényi random graph G(n, p) conditioned
on it being typical, i.e.,

P (·) := P
(· ∣∣ G ∈ Tn,p

)
.

The following result is well known.

Theorem 2.2. For every fixed p ∈ (0, 1) we have P(G(n, p) ∈ Tn,p) → 1 as n → ∞.

Proof. The first property follows from a simple Chernoff bound and a union bound. The
second property for the unnormalized adjacency matrix is proven in [11] and for the nor-
malized adjacency matrix it follows from [4, Theorem 3.6]. The third property is standard
and follows from a simple union bound.

Theorem 2.3. There exists a finite constant C such that for all integers n ≥ C and all

p ∈
(

2 log(n)√
n , 1
)

, every G ∈ Tn,p has the following properties.

1. The top eigenvectors of A and Â are close to �1, in the sense that

‖v1(A) − �1‖2 ≤ 2
log (n)√

np
and ‖v1(̂A) − �1‖2 ≤ 2

p

log (n)√
n

.

2. If S ⊆ [n], PS is the coordinate projection onto S, and QS is the projection onto the
space orthogonal to �1S, then

‖QSPSA‖2 ≤ 2
√

n

p
log (n) and ‖QSPSÂ‖2 ≤ 2

p

log (n)√
n

.

3. The symmetric normalized adjacency matrix Â is closely approximated by 1
np A on

vectors far from �1, in the following specific sense. For any subset S ⊆ [n] and any
x ∈ Rn such that |〈x, �1〉| ≤ α, we have

‖QSPSÂx − 1
np QSPSAx‖2 ≤ 6p−5/2 (log (n))2 + α

√
n log (n)

n
.

4. The second eigenvalue of the symmetric normalized adjacency matrix Â is not too
small, specifically

λ2(̂A) ≥ (1 − o (1))
1 − p

16
√

np
.
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5. Let v be an eigenvector of Â corresponding to the eigenvalue λ. Define the set

S := {i ∈ [n]
∣∣ |v (i)| < α

}
.

We then have

‖PSv‖2 ≥ 1

3

( |λ|
λ2

− log(n)

α4λ2np

)
.

In particular, if λ = �(λ2), λ = 	(n−1/2), and α ≥ log(n)

(np)1/8 , then ‖PSv‖2 = 	(1).

The proof of Theorem 2.3 is given by a series of lemmas in Appendix B.
For a constant C, let AC

n denote the family of graphs G on n vertices having the following
property: All of the eigenvectors v of the adjacency matrix AG satisfy

‖v‖∞
‖v‖2

≤ (log (n))C /
√

n.

The next result will be useful to us in proving a delocalization result for the eigenvectors of
the unnormalized adjacency matrix in Section 4.2.1.

Theorem 2.4 ([9], Theorem 2.16). There exists a finite constant C∞ such that for any
fixed p ∈ (0, 1) we have P

(
G (n, p) ∈ AC∞

n

)→ 1 as n → ∞.

We note that [9, Theorem 2.16] is a stronger and more general result; however, the
theorem above is sufficient for our purposes. The results of [9, Theorem 2.16] show that
C∞ can be taken to be any constant greater than 4.

3. FROM THE SPECTRAL GAP TO DELOCALIZATION OF THE SECOND
EIGENVECTOR

In this section we show how the proof of Theorem 1.3 can be reduced to a question about
the entries of the second eigenvector of the normalized Laplacian. We prove the following
proposition, which gives a sufficient condition for the addition of an edge to decrease the
spectral gap.

Proposition 3.1. Let G = (V , E) ∈ Tn,p. Let v : V → R denote the eigenvector of LG

corresponding to the eigenvalue λ2 (LG), normalized such that ‖v‖2 = 1. Let a, b ∈ V be
two vertices that are not connected by an edge, i.e., {a, b} /∈ E. Denote by G+ = (V , E+)

the graph obtained from G by adding an edge between a and b, i.e., E+ := E ∪ {{a, b}}.
Then

1√
np

(
v(a)2 + v(b)2

)+ (np)−2 < cv(a)v(b) ⇒ λ2 (LG) > λ2

(
LG+
)

,

where c > 0 is a universal constant.
In particular, for every fixed p ∈ (0, 1) there exists a constant Cp such that for all n > Cp

the following holds: if |v(a)|, |v(b)| ∈
[

1
n0.49 , 1

n0.51

]
and v(a)v(b) > 0, then λ2 (LG) >

λ2

(
LG+
)
.

Random Structures and Algorithms DOI 10.1002/rsa
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The main theorem of the paper follows easily from the above proposition together with
the delocalization result described in Theorem 1.7.

Proof of Theorem 1.3. Let G ∼ G(n, p). For a constant c consider the event

Ec := {G ∈ Tn,p

} ∩ {1

n
#

{
i ∈ V : |v (i)| ∈

[
1

n0.51
,

1

n0.49

]}
≥ c

}
,

where v : V → R is the eigenvector of LG corresponding to the eigenvalue λ2 (LG),
normalized such that ‖v‖2 = 1, just as in Proposition 3.1. According to Theorems 1.7
and 2.2, there exists c > 0 such that P(Ec) → 1 as n → ∞; in fact, by Theorem 1.7 we
can take c = 1/2 − η for any constant η > 0. Define

J+ :=
{

i ∈ V : v (i) ∈
[

1

n0.51
,

1

n0.49

]}
and J− :=

{
i ∈ V : −v (i) ∈

[
1

n0.51
,

1

n0.49

]}
.

Whenever Ec holds, we must have |J+| + |J−| ≥ nc. Let F+ := (J+2 ) be the set of possible
edges between vertices in J+, and define F− := (J−2 ) similarly. Since G ∈ Tn,p, by Property 3
in the definition of Tn,p, we have

|F+ \ E (J+)| ≥ (1 − p)

(|J+|
2

)
− n3/2

and

|F− \ E (J−)| ≥ (1 − p)

(|J−|
2

)
− n3/2.

For the same reason, the number of edges in G is at least p
(n

2

) − n3/2, so the number of
“non-edges” is at most (1 − p)

(n
2

) + n3/2. By Proposition 3.1, assuming that n > Cp, we
have for every (a, b) ∈ (F+ \ E (J+)) ∪ (F− \ E (J−)) that λ2 (LG) > λ2

(
LG+
)
, where G+

is the graph obtained from G by adding an edge between a and b. Therefore

a− (G) ≥
(1 − p)

[(|J+|
2

)+ (|J−|
2

)]− 2n3/2

(1 − p)
(n

2

)+ n3/2

≥
(1 − p)

[( |J+|+|J−|
2

)2 − (|J+| + |J−|)
]

− 2n3/2

(1 − p)
(n

2

)+ n3/2

≥
(1 − p)

[(
nc
2

)2 − n
]

− 2n3/2

(1 − p)
(n

2

)+ n3/2
≥ c2

2
− o (1)

as n → ∞, which concludes the proof.

For the proof of Proposition 3.1 we use the following lemma, which holds for any finite
graph and follows from elementary computations.
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Lemma 3.2. Let G = (V , E) be a finite graph, and let v be an eigenvector of LG

corresponding to the eigenvalue λ2 (LG) orthogonal to the top eigenvector D1/21 and nor-
malized such that ‖v‖2 = 1. Let a, b ∈ V be two vertices that are not connected by an
edge, i.e., {a, b} /∈ E. Denote by G+ = (V , E+) the graph obtained from G by adding an
edge between a and b, i.e., E+ := E ∪ {{a, b}}. Define the quantity pv := 〈v, v+

1 〉, where

v+
1 := D1/2

+ 1/
√∑

i∈[n] d+
i . If

p2
vλ2 (LG) + 2 (1 − λ2 (LG))

{√
da + 1 − √

da√
da + 1

v (a)2 +
√

db + 1 − √
db√

db + 1
v (b)

2

}
<

2v (a) v (b)√
da + 1

√
db + 1

,

(2)

then
λ2 (LG) > λ2

(
LG+
)

,

i.e., the spectral gap decreases by adding an edge between u and v.

Remark 3.3. Note that this result holds even if G is disconnected. In that case λ2 (LG) = 0,
so the spectral gap clearly cannot decrease. This is not in contradiction with the lemma
above; when λ2 (LG) = 0, the inequality (2) cannot hold.

Proof. Let D+ denote the diagonal matrix containing the degrees of the vertices in G+ on
the diagonal; the degrees are d+

i = di for all i ∈ V \{a, b}, and d+
a = da +1 and d+

b = db +1.

The unit first eigenvector of LG is v1 := D1/21/
√∑

i∈[n] di, while the first unit eigenvector of

LG+ is v+
1 := D1/2

+ 1/
√∑

i∈[n] d+
i . By the variational characterization of eigenvalues, using

also that the first eigenvalue of LG+ , corresponding to the eigenvector v+
1 , is 0, we have

λ2

(
LG+
) = min

x
〈x,v+

1 〉=0

xTLG+x

xT x
≤ vT

⊥LG+v⊥
vT

⊥v⊥
= vTLG+v

1 − p2
v

, (3)

where v⊥ denotes the projection of v onto the subspace orthogonal to v+
1 , and recall that

v is a unit vector. A straightforward calculation—which requires a lot of bookkeeping;
see Appendix A for details—tells us that the expression for vTLG+v simplifies to the
following:

vTLG+v = λ2(LG) + 2 (1 − λ2 (LG))

{√
da + 1 − √

da√
da + 1

v (a)2 +
√

db + 1 − √
db√

db + 1
v (b)

2

}
− 2v(a)v(b)√

(da + 1)(db + 1)
.

(4)

By (3) we have that
vTLG+v

1 − p2
v

< λ2 (LG) (5)
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implies that λ2

(
LG+
)

< λ2 (LG). By plugging in our expression for vTLG+v in (4), we get
that (5) is equivalent to (2).

We are now ready to prove the main proposition of the section.

Proof of Proposition 3.1. Using Lemma 3.2, we are interested in a sufficient condition for
the inequality (2) to hold for G ∈ Tn,p. Since G ∈ Tn,p, we have by definition that

∀i ∈ V , np − log(n) · √
np ≤ di ≤ np + log(n) · √

np.

Under the assumption that n is large enough so that log(n)
√

np < np/2, we get that

∀i ∈ V , np/2 ≤ di ≤ 2np. (6)

This gives us that

√
da + 1 − √

da√
da + 1

≤ 1

np
,

√
db + 1 − √

db√
db + 1

≤ 1

np
and

1√
da + 1

√
db + 1

>
1

4np
. (7)

Using the notation for v1 and v+
1 from the previous lemma, and since we have 0 = vT v1 =∑

i∈V v (i)
√

di/
√∑

i∈V di, the length of the projection of v onto v+
1 is

pv := 〈v, v+
1

〉
= 1√∑

i∈V d+
i

((∑
i∈V

v(i)
√

di

)
− v(a)

√
da − v(b)

√
db + v(a)

√
da + 1 + v(b)

√
db + 1

)

= 1√
2 +∑i∈V di

{
v(a)(
√

da + 1 −√da) + v(b)(
√

db + 1 −√db)
}

,

which, together with Eq. (6) gives that

|pv| ≤ (np)−3/2 (|v(a)| + |v(b)|) ≤ 2(np)−3/2.

The above equation, together with (7), plugged into (2) gives that a sufficient condition
for (2) to hold is that

8 (np)−2 + 4 (1 − λ2 (LG))
(
v(a)2 + v(b)2

)
< v(a)v(b). (8)

Since G ∈ Tn,p, by definition we also have that

|1 − λ2 (LG)| = ∣∣λ2(̂A)
∣∣ ≤ 8√

np
,

and so (8) is implied by the inequality

8 (np)−2 + 32 (np)−1/2
(
v(a)2 + v(b)2

)
< v(a)v(b),

which concludes the proof with c = 1/32.
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4. DELOCALIZATION OF THE SECOND EIGENVECTOR

In this section we prove our delocalization result stated in Theorem 1.7. As a warm-up, we
first prove an analogous result for the adjacency matrix AG of G = G(n, p) which contains
most of the main ideas of the proof for the normalized case, but is somewhat simpler.
We then present the proof for the normalized Laplacian, which carries with it some extra
difficulties.

Before we move on to these proofs, we need to collect a few auxiliary results related
to small ball concentration bounds for sums of independent random variables. We present
these in the next subsection.

4.1. Small Ball Concentration Estimates

Consider a vector whose entries are independent sums of independent scaled Bernoulli
random variables. Our proof hinges on showing an upper bound for the probability that
such a vector has small norm. To do this, we rely on a previous Littlewood-Offord-type
result and also on a theorem of Rudelson and Vershynin [19, Corollary 1.5].

The following definition is natural for our purposes.

Definition 4.1. For a real random vector Z ∈ Rn and t ≥ 0, define the concentration
function

R(Z , t) := max
q∈Rn

P
[‖Z − q‖2 ≤ t

]
.

This function measures the largest probability that a random vector lands in a ball of
fixed radius.

For a single entry of a vector, we use the following lemma to bound the concentration
function.

Lemma 4.2. Let X = ∑i∈[n] aiβi, where the βi ∼ Ber(p) are independent Bernoulli
random variables with expectation p. There exists an absolute constant C < ∞ such that
if |ai| ≥ 1 for at least m indices i ∈ [n], then for all r ≥ 1,

R(X , r) ≤ Cr√
mp(1 − p)

.

This is a simple generalization of Erdős’s strengthening of the Littlewood-Offord the-
orem [10, 14]. We provide the proof (based on an idea of Halász [12]; see also [17]) for
completeness.

Proof. It suffices to prove the statement for r = 1, as the dependence on r follows from a
union bound. By a standard computation (see e.g. [17, Lemma 6.2]) we have that

R(X , 1) ≤ C
∫ 1

−1
|E[exp(itX)]|dt

for a universal constant C > 0. Write

J := {j :
∣∣aj

∣∣ ≥ 1}.
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By the independence of the βj’s and using Hölder’s inequality we have∫ 1

−1
|E[exp(itX)]|dt =

∫ 1

−1

∣∣∣∣∣∏
j∈[n]

E[exp(itajβj)]
∣∣∣∣∣ dt

≤
∫ 1

−1

∣∣∣∣∣∏
j∈J

E[exp(itajβj)]
∣∣∣∣∣ dt

≤
∏
j∈J

(∫ 1

−1

∣∣E[exp(itajβj)]
∣∣m dt

)1/m

,

where m is the cardinality of J . The proof would therefore be concluded by proving that for
all j ∈ J , one has ∫ 1

−1

∣∣E[exp(itajβj)]
∣∣m dt ≤ C′

√
mp(1 − p)

(9)

for a universal constant C′. We have

E[exp(itajβj)] = (1 − p) + p exp(itaj),

so ∣∣E[exp(itajβj)]
∣∣2 = 1 − 2p(1 − p)(1 − cos(ajt)),

and thus (substituting w = ajt) we have∫ 1

−1

∣∣E[exp(itajβi)]
∣∣m dt = 1∣∣aj

∣∣
∫ |aj|

−|aj|
(
1 − 2p(1 − p)(1 − cos(w))

)m/2
dw.

Using the periodicity of cos(x), its monotonicity in the interval [0, π ], and also using the
fact that

∣∣aj

∣∣ ≥ 1, we have

1∣∣aj

∣∣
∫ |aj|

−|aj|
(
1 − 2p(1 − p)(1 − cos(w))

)m/2
dw ≤ 4

∫ π/2

−π/2

(
1 − 2p(1 − p)(1 − cos(w))

)m/2
dw.

Next, using the fact that 1 − cos(x) ≥ x2/8 for x ∈ [−π/2, π/2], we have∫ π/2

−π/2

(
1 − 2p(1 − p)(1 − cos(w))

)m/2
dw ≤
∫ π/2

−π/2

(
1 − 1

4 p(1 − p)w2
)m/2

dw ≤ C′′
√

mp(1 − p)

for some constant C′′ > 0. Putting the last displays together gives (9).

We also use the following result, which roughly states that if X = (X1, . . . , Xn) is a
random vector with independent coordinates and the distributions of the Xi are well spread
on the line, then the distribution of a linear image of X by a certain linear transformation is
also well-spread. This result will be used in conjunction with the Littlewood-Offord-type
lemma above. It is a simple analog (but not a special case) of [19, Corollary 1.5].

Lemma 4.3. Let 1 ≤ d < n be integers. Suppose that X = (X1, . . . , Xd) is a random
vector where the Xi are independent real-valued random variables, and that t, q ≥ 0 are
such that for all i ∈ [d],

R(Xi, t) ≤ q.
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Suppose also that |Xi| ≤ K almost surely for all i ∈ [d] and for some K > 0. Let T be
a linear isometric embedding of Rd in Rn and let H ⊂ Rn be an (n − 1)-dimensional
subspace. Let PH denote the orthogonal projection from Rn onto H. Then there exists an
absolute constant C < ∞ such that

R(PHTX , t
√

d) ≤ (Cq)d(K/t + 1)
√

d.

Proof. By rescaling, we may clearly assume that t = 1 and replace K by K ′ = K/t.
Let Y1, ..., Yd be independent random variables uniformly distributed on [−1, 1] and let
Y = (Y1, ..., Yd). Define Z = X + Y , denote by fi the density of Zi and by f the density of
Z . Note that we have

fi(x) = 1
2 P(|Xi − x| ≤ 1) ≤ R(Xi, 1) ≤ q, ∀x ∈ R

and therefore
f (x) ≤ qd , ∀x ∈ Rd . (10)

Denote by V the image of the operator T , and by PV the orthogonal projection onto V .
Suppose for now that V � H (the other case is in fact simpler). Define H̃ = PHV and
W = V ∩ H. By dimension considerations, there exists a unit vector v ⊥ W such that
V = sp (W ∪ {v}).

Fix a point x ∈ Rn. By the triangle inequality and since almost surely, ‖Y‖ ≤ √
d, we

have
P
(
‖PHTX − x‖ <

√
d
)

≤ P
(
‖PHTZ − x‖ ≤ 2

√
d
)

. (11)

Now, since PW is a contraction and | det T | = 1, we have

P
(
‖PHTZ − x‖ ≤ 2

√
d
)

≤ P
(
‖PW TZ − PW x‖ ≤ 2

√
d
)

=
∫
{z∈V : ‖PW z−PW x‖≤2

√
d}

f
(
T−1z
)

dz

=
∫
{y∈W : ‖y−PW x‖≤2

√
d}

∫
R

f
(
T−1(y + sv)

)
dsdy.

Next, since we have by assumption |Xi| ≤ K ′ almost surely and since |Yi| ≤ 1, we have
f
(
T−1(w + sv)

) = 0 for all w ∈ W whenever |s| > (K ′ +1)
√

d. Plugging this fact, together
with Eq. (10), into the last inequality yields

P
(
‖PHTZ − x‖ ≤ 2

√
d
)

≤ VolW

({
y ∈ W ; ‖y − PW x‖ ≤ 2

√
d
})

qd(K ′ + 1)
√

d

≤ (4q)d(K ′ + 1)
√

d

where VolW denotes the (d − 1)-dimensional Lebesgue measure in W , and in the second
inequality we have used a standard estimate related to the volume of the (d−1)-dimensional
unit ball. Together with Eq. (11) we conclude that

R(PHTX , t
√

d) ≤ (4q)d(K ′ + 1)
√

d

which finishes the proof for that case that V � H. For the (simpler) case that V ⊆ H we
just plug in Eq. (11) with (10) and with the same estimate for the volume of the Euclidean
ball that we have used above.
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4.2. Delocalization

4.2.1. Delocalization of Eigenvectors of the Adjacency Matrix.

Theorem 4.4. Fix p ∈ (0, 1), and let G be an instance of G(n, p). For any constant η > 0
there exists a finite positive constant C = C (η, p) such that asymptotically almost surely
all eigenvectors of AG (normalized to have unit �2-norm) have at least (1/2 − η) n entries
of magnitude at least 1√

n(log(n))C .

For the first eigenvector v1 a stronger statement is known; see [15]. Consequently, we
focus our attention on the eigenvectors v2, . . . , vn, which are orthogonal to v1. We also note
that for the adjacency matrix a stronger version of Theorem 4.4 follows from the recent
results of Rudelson and Vershynin [20] that were obtained independently.

The following lemma is the main step towards proving the theorem above. Recall that
P denotes the distribution of an instance of G = G(n, p) conditioned on G ∈ Tn,p (see
Definition 2.1). Recall that AC

n denotes the family of graphs G on n vertices such that all
of the eigenvectors of AG, normalized to have unit �2-norm, have infinity-norm bounded by
(log (n))C /

√
n. Recall also from Theorem 2.4 that there exists a finite constant C∞ such that

{G(n, p) ∈ AC∞
n } occurs with probability tending to 1 as n → ∞ for any fixed p ∈ (0, 1).

In what follows, C∞ always denotes this constant.

Lemma 4.5. Fix p ∈ (0, 1) and μ ∈ (1/4, 1/2). Let W ⊆ [n] be of size μn, and let
W C := [n] \ W. Let δ be such that n−1/2+1/10 < δ < 1/10. Fix j ∈ {2, 3, . . . , n}. Recall that
vj denotes the jth unit eigenvector of AG. Then there exists a finite constant Cp, depending
only on p, such that

P

(∣∣vj (i)
∣∣ ≤ δ√

n
for all i ∈ WC

∣∣∣∣ G ∈ AC∞
n

)
≤ (Cp log (n)

)(C∞+1)n × δ(1−2μ)n. (12)

Proof. Our proof proceeds by a union bound over candidate eigenvectors. Let 	W ⊂ Rn

be the set of all vectors obeying the appropriate constraints, that is,

	W :=
{

v ∈ Rn

∣∣∣∣ ‖v‖ = 1, ‖v‖∞ ≤ (log (n))C∞
√

n
, |v(i)| ≤ δ√

n
∀i ∈ WC

}
.

Given G ∈ AC∞
n , if
∣∣vj (i)
∣∣ ≤ δ/

√
n for all i ∈ WC , then vj ∈ 	W . We define a net �W over

	W with resolution R := δ/
√

n in the following way:

�W :=
{

x ∈ Rn

∣∣∣∣ x = R · k, k ∈ Zn, ki = 0 ∀i ∈ WC , |ki| ≤ (log (n))C∞

R
√

n
∀i ∈ W ,

‖x‖ ∈ [1 − δ, 1 + δ]

}
.

The discretization �W has the property that for any v ∈ 	W , there exists x ∈ �W such that

u := v − x ∈
[
− δ√

n , δ√
n

]n
. The cardinality of the net �W can be bounded from above by

noting that for any x ∈ �W , the coordinates of x in WC are fixed, while the coordinates in
W can take on at most 2 (log (n))C∞ /

(
R
√

n
)+ 1 values, and so

|�W | ≤
(

2 (log (n))C∞

R
√

n
+ 1

)|W |
≤
(

3 (log (n))C∞

δ

)μn

. (13)
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For a vector v ∈ Rn, define the event

FW ,v,A := {QWC PWC Av ∈ B
(
0, δn1/2 log (n)

)}
,

where PWC is the projection onto the coordinates of WC , and QWC is the orthogonal projection
onto the space orthogonal to �1WC . We claim that

G ∈ Tn,p and vj ∈ 	W ⇒ FW ,vj ,A. (14)

Indeed, by definition,
(
Avj

)
(i) = λjvj (i) for all coordinates i ∈ [n]. Since G ∈ Tn,p and

j ≥ 2, we have
∣∣λj

∣∣ ≤ 3
√

n. Since vj ∈ 	W , we have
∣∣vj (i)
∣∣ ≤ δ/

√
n for all i ∈ WC , and so∣∣(PWC Avj

)
(i)
∣∣ ≤ 3δ for all i ∈ WC . Note also that

(
PWC Avj

)
(i) = 0 for all i ∈ W . Therefore

PWC Avj ∈ B
(
0, 3δ

√
n
) ⊆ B
(
0, δn1/2 log (n)

)
. Since ‖QWC ‖ = 1 (recall that for a matrix M

we have ‖M‖ ≡ ‖M‖2 = supx:‖x‖2=1 ‖Mx‖2), it follows that the event FW ,vj ,A holds, which
establishes the implication in (14).

Next, for v ∈ 	W , let x ∈ �W be the closest point in �W such that u := v − x ∈[−δ/
√

n, δ/
√

n
]n

(such an x ∈ �W exists; in case it is not unique, take one of the closest
points arbitrarily). Then

‖QWC PWC Ax‖ ≤ ‖QWC PWC Av‖ + ‖QWC PWC Au‖ ≤ ‖QWC PWC Av‖ + 2δ
√

n/p log n,

where the first inequality follows from the triangle inequality, and the second inequality
follows from the Cauchy-Schwarz inequality, the fact that ‖u‖ ≤ δ, and Theorem 2.3, part
2. Therefore, if G ∈ Tn,p and vj ∈ 	W , then we have

FW ,vj ,A holds ⇒ ∃x ∈ �W such that HW ,x,A holds, (15)

where

HW ,x,A :=
{

QWC PWC Ax ∈ B
(

0, 3δ
√

n
p log (n)

)}
.

We now fix x ∈ �W , and bound P
[
HW ,x,A

]
. Note that xi = 0 for all i ∈ WC , so we

can write x = PW x, where PW is the coordinate projection onto W . Define Y := PWC Ax.
Thus Yi = 0 for i ∈ W , while for i ∈ WC we have Yi = ∑j∈W Aijxj, that is, Yi is a sum
of scaled independent Bernoulli random variables. By design, for any x ∈ �W we have

‖x‖∞ ≤ (log(n))C∞√
n and ‖x‖2

2 ≥ (1 − δ)2 > 3
4 , and so there are at least n

2(log(n))2C∞ entries of x

with magnitude at least 1
2
√

n . We can now apply Lemma 4.2 to 2
√

nYi with m = n
2(log(n))2C∞

and r = 12δ
√

n
p log (n) to get that

R
(

Yi,
6δ√

p
log (n)

)
= R
(

2
√

nYi, 12δ
√

n
p log (n)

)
≤ C

p
√

1 − p
δ (log (n))C∞+1

for some finite universal constant C > 0.
Furthermore, the random variables {Yi}i∈WC are independent. This is because Yi =∑
j∈W Aijxj is a function of the random variables

{
Aij

}
j∈W

, and since W and WC are disjoint,
the random variables {Yi}i∈WC are functions of disjoint subsets of the i.i.d. random variables
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Aij

}
i,j∈[n],i<j

. Thus, we can apply Lemma 4.3 to Y , with t = 6δ√
p log (n), d = (1 − μ)n,

K = n, q = C
p
√

1−p
δ (log (n))C∞+1, and H = �1⊥

WC to get

P
[
HW ,x,A

] ≤ R
(

QWC Y , 3δ
√

n
p log (n)

)
≤ R
(

QWC Y , t
√

d
)

≤
(

C′

p
√

1 − p
δ (log (n))C∞+1

)(1−μ)n

× n2
(16)

for a universal constant C′ > 0, where in the second inequality we used the fact that
μ ∈ (1/4, 1/2).

Finally, we take a union bound to arrive at our result:

P

(∣∣vj (i)
∣∣ ≤ δ√

n
for all i ∈ WC

∣∣∣∣ G ∈ AC∞
n

)
(14)≤ P
(

FW ,vj ,A

∣∣ G ∈ AC∞
n

) (15)≤ P
(∪x∈�W HW ,x,A

∣∣ G ∈ AC∞
n

)
≤ 2P
(∪x∈�W HW ,x,A

) ≤ 2 |�W | max
x∈�W

P
(
HW ,x,A

)
(13)∧(16)≤ 2n2

(
3 (log (n))C∞

δ

)μn

×
(

C′

p
√

1 − p
δ (log (n))C∞+1

)(1−μ)n

= 2n2 × 3μn ×
(

C′

p
√

1 − p

)(1−μ)n

× δ(1−2μ)n × (log (n))(C∞+1−μ)n

≤ (Cp log (n)
)(C∞+1)n × δ(1−2μ)n,

where in the third inequality, which holds for n large enough, we used Theorem 2.2 and
Theorem 2.4.

Using this lemma we now prove Theorem 4.4.

Proof. Fix a constant η ∈ (0, 1/4), and let μ = 1/2 − η. We apply Lemma 4.5, and take
a union bound over the possible subsets W ⊆ [n] (of which there are at most 2n) and over
the possible eigenvectors. The lemma thus tells us that there exists a constant C such that,
conditioned on G ∈ Tn,p and G ∈ AC∞

n , the probability that there exists a subset W ⊆ [n]
of size μn and an eigenvector vj, with j ≥ 2, such that

∣∣vj (i)
∣∣ ≤ δ/

√
n for all i ∈ WC is at

most

(C log (n))(C∞+1)n × δ2ηn.

Now choosing δ := (log (n))−(C∞+1)/η, we get that conditioned on G ∈ Tn,p and G ∈ AC∞
n ,

the probability that there are not at least (1/2 − η) n entries of each eigenvector of A of
magnitude at least

1√
n (log (n))(C∞+1)/η

is at most (C/ log (n))(C∞+1)n. Since G ∈ Tn,p ∩ AC∞
n asymptotically almost surely (by

Theorems 2.2 and 2.4), we are done.
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4.2.2. Delocalization of Eigenvectors of the Normalized Adjacency Matrix. In this
section we prove our main delocalization result, Theorem 1.7. Our proof for the normalized
adjacency matrix also proceeds by a union bound over candidate eigenvectors. However, it
is slightly more involved than for the (unnormalized) adjacency matrix. For one, the degree
normalizations D−1/2AD−1/2 introduce correlations between the rows of the matrix. Another
major issue is the lack of an �∞ bound for the eigenvectors: the analogue of Theorem 2.4
for the normalized adjacency matrix is not known to hold, so we have to circumvent using
this in the proof. Still, with the help of some additional technical lemmas and with a more
careful choice of a net for candidate eigenvectors, the proof proceeds more or less along the
same lines. Let us highlight some of the main ideas used to overcome the extra difficulties
that arise.

• The lack of the �∞ bound for eigenvectors, i.e., the fact that Theorem 2.4 may not be
used, is bypassed by first showing that a constant fraction of the �2 mass of the eigen-
vector comes from entries bounded by log (n) /n1/8; this follows from Theorem 2.3
part (5). Then, one may partition the coordinates of the eigenvector into a logarithmic
number of level sets, according to geometrically increasing scales, and argue that at
least one of these level sets contains a significant portion of the mass of the vector.
In other words, we will show that one can find a non-negligible portion of the mass
of the vector concentrated on entries with comparable size, or more specifically that
there are at least k entries whose magnitude is respectively bounded from below by
a constant α so that kα2 is only logarithmically small. These entries will be the ones
used for our small ball bound.

• The non-independence of the entries of Â is mainly overcome by comparison to the
matrix 1

np A. Since the entries of D are concentrated around their expectation, the event

that Âv is in a small ball may be estimated by the event that 1
np Av is in a slightly larger

ball. This is carried out in step 5 below, and uses Theorem 2.3 part (3).

The central lemma in the proof is the following.

Lemma 4.6. For every p ∈ (0, 1), there exists a constant Cp > 0 such that the following
holds. Let μ ∈ (1/4, 1/2), let W ⊆ [n] be a subset of size μn, and let WC := [n] \ W. Let
δ be such that n−1/10 < δ < 1/100 and let n ≥ Cp be an integer. Let G be an instance of
G(n, p), and let v2 denote the second eigenvector of Â, normalized such that ‖v2‖ = 1. Then
we have

P

(
|v2 (i)| ≤ δ√

n
for all i ∈ WC

)
≤ (Cp log (n)

)2n × δ(1−2μ)n. (17)

Proof. Step 1: Candidate eigenvectors. The goal of this step is to show that we may
restrict our attention to vectors whose entries are bounded by log(n)

n1/8 and, moreover, that are

almost orthogonal to �1.
For a vector v ∈ Rn, define the set of indices

S (v) :=
{

i ∈ [n] : |v (i)| ≤ log (n)

n1/8

}
,

and also

S′ (v) :=
{

i ∈ [n] : |v (i)| ≤ 2 log (n)

n1/8

}
.
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Define the subset 	W ⊂ Rn as follows:

	W :=
{

v ∈ Rn

∣∣∣∣ ‖v‖ = 1,
∣∣∣〈v, �1
〉∣∣∣ ≤ 2

p

log (n)√
n

, |v (i)| ≤ δ√
n

∀i ∈ WC , ‖v|S(v)‖2 ≥ 1

10

}
,

where v|S ≡ PSv is the projection of v onto the coordinates of S. Define the vector �1D :=
diag(

√
d1, . . . ,

√
dn)/
√∑

j dj and recall that v1(̂A) = �1D. Note that if G ∈ Tn,p then by

Theorem 2.3, part 1, we have∣∣∣〈v2, �1
〉∣∣∣ ≤ ∣∣∣〈v2, �1 − v1

〉∣∣∣+ |〈v2, v1〉| ≤ ‖v2‖‖�1 − �1D‖ + 0 ≤ 2

p

log (n)√
n

.

Furthermore, by Properties 4 and 5 of Theorem 2.3, we have that if G ∈ Tn,p then
‖v2|S(v2)‖2 ≥ 1

10 . Thus if G ∈ Tn,p then

|v2 (i)| ≤ δ/
√

n, ∀i ∈ WC ⇒ v2 ∈ 	W . (18)

Step 2: Constructing the net. In this step we construct a net �W over 	W for candidate
eigenvectors, over which we will later take a union bound. Again, this is a net with resolution
R = δ/

√
n. However, the construction is a bit more involved than in the unnormalized case,

because we have to overcome the lack of an analogue of Theorem 2.4 (the bound on ‖v‖∞).
We define

�W :=
{

x ∈ Rn

∣∣∣∣ x = R · k, k ∈ Zn, ki = 0 ∀i ∈ WC ,
∣∣∣〈x, �1
〉∣∣∣ ≤ 3

p

log (n)√
n

,

‖x‖ ∈ [1 − 2δ, 1 + 2δ] , ‖x|S′(x)‖2 ≥ 1

20

}
.

We claim that this net has the following property:

∀v ∈ 	W , ∃x ∈ �W such that u := v − x ∈
[
− 4δ√

n , 4δ√
n

]n
. (19)

To see this, given v ∈ 	W , first define x′ ∈ Rn by setting x′ (i) = 0 for i ∈ W C , and
x′ (i) = v (i) for i ∈ W . Since |v (i)| ≤ δ/

√
n for all i ∈ WC , we have∣∣∣〈x′, �1

〉
−
〈
v, �1
〉∣∣∣ ≤ (1 − μ)δ.

So the inner product
〈
x′, �1
〉

might have large magnitude, but this can be “corrected for” and

made close to zero by changing the coordinates of x′ in W by at most (1−μ)δ

μ
√

n each. That is, we

can find x′′ ∈ Rn such that x′′ (i) = 0 for all i ∈ WC , |x′′ (i) − x′ (i)| ≤ (1−μ)δ

μ
√

n for all i ∈ W ,

and
∣∣∣〈x′′, �1
〉∣∣∣ ≤ 2

p
log(n)√

n . Now x′′ (i) /R might not be an integer for i ∈ W , but by changing each

coordinate by at most δ/
√

n, this can be achieved. Moreover, this can be done in such a way
(by alternating the sign of the change in the coordinates) that the inner product of this vector
with �1 changes by at most δ/n. That is, we can find x ∈ Rn such that x (i) = 0 for all i ∈ WC ,

|x (i) − x′′ (i)| ≤ δ√
n for all i ∈ W , x (i) /R ∈ Z, and

∣∣∣〈x, �1
〉
−
〈
x′′, �1
〉∣∣∣ ≤ δ/n. Consequently
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we must have
∣∣∣〈x, �1
〉∣∣∣ ≤ 2

p
log(n)√

n + δ/n ≤ 3
p

log(n)√
n . By construction and the triangle inequality

we must have ‖x‖ ∈ [1 − 2δ/
√

μ, 1 + 2δ/
√

μ
]
. Finally, since |x (i) − v (i)| ≤ δ

μ
√

n ≤ log(n)

n1/8

for all i ∈ W , we have
∥∥x|S′(x)

∥∥ ≥ ∥∥v|S(v)

∥∥− 2δ/
√

μ ≥ 1/10 − 4δ ≥ 1/20. Thus we have

x ∈ �W and also v − x ∈
[
− δ

μ
√

n , δ

μ
√

n

]n
. By the assumption μ > 1/4 we get (19).

Step 3: Bounding the cardinality of the net. First note that �W is contained in the
ball of radius 1 + 2δ in Rμn. If we cover �W with hypercubes of edge length R (i.e., each
point in �W is covered by at least one vertex of such a hypercube), then the union of these
hypercubes will be contained in the ball of radius 1 + (2 + √

μ
)
δ ≤ 2 in Rμn. Note that

each such hypercube has 2μn vertices. Recall that the Euclidean ball of radius r in Rd has
volume Vd (r) = πd/2

(d/2+1)
rd , which by Stirling’s approximation is at most (2πe/d)

d/2 rd .
Consequently we have the following bound on the cardinality of �W :

|�W | ≤ 2μn Vμn (2)

Rμn
≤ 2μn (8πe/ (μn))μn/2(

δ/
√

n
)μn ≤

(
40

δ

)μn

. (20)

We use this estimate later when we take a union bound over points in �W .

Step 4: Reduction to a small ball estimate for vectors in the net. For a vector v ∈ Rn,
define the event

FW ,v,̂A := {QWC PWC Âv ∈ B
(
0, δ log (n) /

√
n
)}

,

and for a point x ∈ �W define

HW ,x,̂A :=
{

QWC PWC Âx ∈ B

(
0,

12

p

δ log (n)√
n

)}
,

where again PWC is the projection onto the coordinates of WC , and QWC is the orthogonal
projection onto the space orthogonal to �1WC . For G ∈ Tn,p, we now prove that

v2 ∈ 	W ⇒ FW ,v2,̂A holds. (21)

Moreover, we shall also see that

v2 ∈ 	W and FW ,v2,̂A holds ⇒ ∃x ∈ �W such that HW ,x,̂A holds. (22)

Let us prove the implication (21). By definition,
(̂
Av2

)
(i) = λ2v2 (i) for all coordinates

i ∈ [n]. Since G ∈ Tn,p, |λ2| ≤ 8/
√

np. Since v2 ∈ 	W , |v2 (i)| ≤ δ/
√

n for all i ∈ WC ,
and so

∣∣(PWC Âv2

)
(i)
∣∣ ≤ 8δ/(n

√
p) for all i ∈ WC . Therefore PWC Âv2 ∈ B

(
0, 8δ/

√
np
) ⊆

B
(
0, δ log (n) /

√
n
)
. Since

∥∥QWC

∥∥ = 1, it follows that the event FW ,v2,̂A holds.
Let us now prove (22). For v ∈ 	W , let x ∈ �W be the closest point in �W such that

u := v − x ∈
[
− 4δ√

n , 4δ√
n

]n
; as we discussed above, such an x ∈ �W exists. Then

∥∥QWC PWC Âx
∥∥ ≤ ∥∥QWC PWC Âv

∥∥+ ∥∥QWC PWC Âu
∥∥ ≤ ∥∥QWC PWC Âv

∥∥+ 8δ log (n)

p
√

n
,

where the first inequality follows from the triangle inequality, and the second inequality
follows from the Cauchy-Schwarz inequality, the fact that ‖u‖ ≤ 4δ, and Theorem 2.3,
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part 2. Therefore, if G ∈ Tn,p, v2 ∈ 	W , and the event FW ,v2,̂A holds, then there exists
x ∈ �W such that the event HW ,x,̂A holds.

Step 5: Deriving a small ball bound. Fix x ∈ �W . Our next goal is to prove the bound

P
[
HW ,x,̂A

] ≤ 2n6

(
C2√

p(1 − p)
δ (log (n))3/2

)(1−μ)n

(23)

for a universal constant C2 > 0.
We do this by coupling PWC Âx with a vector whose nonzero entries are independent

sums of scaled independent Bernoulli random variables, in order to shed the correlations
introduced by the degrees in the normalization of Â. We can write Â = 1

np A + Ã, where Ã
is a correction matrix. Then by the triangle inequality and Theorem 2.3, part 3, we have

1

np

∥∥QWC PWC Ax
∥∥ ≤ ∥∥QWC PWC Âx

∥∥+ ∥∥QWC PWC Ãx
∥∥ ≤ ∥∥QWC PWC Âx

∥∥+ 24

p7/2

(log (n))2

n
,

where in the application of Theorem 2.3, part 3 we used that x ∈ �W and so
∣∣∣〈x, �1
〉∣∣∣ ≤

(3/p) log (n) /
√

n. So for n large enough so that 6p−5/2 ≤ δ
√

n
log n holds (such an n exists since

δ > n−1/10 by assumption), we have

P
(
HW ,x,̂A

) ≤ P

(
1

np
QWC PWC Ax ∈ B

(
0,

16

p

δ log (n)√
n

))
= P
(
QWC PWC Ax ∈ B

(
0, 16δ

√
n log (n)

))
≤ 2P
(
QWC PWC Ax ∈ B

(
0, 16δ

√
n log (n)

))
,

where in the last line we used the fact that G ∈ Tn,p with high probability. We are thus left
with bounding this latter probability.

Define Y := PWC Ax. Note that xi = 0 for all i ∈ WC , so we can write x = PW x, where PW

is the coordinate projection onto W . We have Yi = 0 for i ∈ W , while for i ∈ WC we have
Yi =∑n

j=1 Aijxj =∑j∈W Aijxj, that is, Yi is a sum of scaled independent Bernoulli random
variables. In order to bound the small ball probability for Yi using the Littlewood-Offord-
type estimate, we need to guarantee that x has many entries with large enough magnitude.
Contrary to the proof in Section 4.2.1, we now do not have a bound on ‖x‖∞, and so we
cannot deduce this immediately. Instead, we use the fact that

∥∥x|S′(x)
∥∥ ≥ 1/20. Recall that

by definition this means that ∑
i:|xi|≤ 2 log(n)

n1/8

|xi|2 ≥ (1/20)2 ,

and since
∑

i:|xi|≤1/n |xi|2 ≤ n × (1/n2
) = 1/n, for large enough n we have∑

i:
1
n ≤|xi|≤ 2 log(n)

n1/8

|xi|2 ≥ 10−3.

Define for each � ∈ Z the set of indices S� := {i ∈ [n] : |xi| ∈ [2−(�+1), 2−�
)}

. Then by the
above we have

log(n)∑
�= 1

10 log(n)

|S�| 4−� ≥ 10−3,
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and so there must exist an integer �∗ ∈ [ 1
10 log (n) , log (n)

]
such that |S�∗ | 4−�∗ ≥

10−3/ log (n). We can now apply Lemma 4.2 to the random variable 2�∗+1Yi with m =
4�∗

103 log(n)
and r = 2�∗+1 × 16δ log (n) to get that

R (Yi, 16δ log (n)) = R
(

2�∗+1Yi, 2�∗+116δ log (n)
)

≤ C1√
p(1 − p)

δ (log (n))3/2

for some universal constant C1 > 0.
Furthermore, the random variables {Yi}WC are independent, as we have already argued

in Section 4.2.1. Thus, we can apply Lemma 4.3 to Y , with t = 16δ log (n), d = (1 − μ) n,
K = n4, q = C1√

p(1−p)
δ (log (n))3/2, and P = QWC , to get

P
(
QWC PWC Ax ∈ B

(
0, 16δ

√
n log (n)

)) ≤ R
(
QWC Y , 16δ

√
n log (n)

)
≤
(

C2√
p(1 − p)

δ (log (n))3/2

)(1−μ)n

× n6

for some universal constant C2 > 0. Thus the bound (23) is proven.

Step 6: Conclusion. Finally, we take a union bound to arrive at our result:

P

(
|v2 (i)| ≤ δ√

n
for all i ∈ WC

)
(18)∧(21)≤ P

(
FW ,v2,̂A

) (22)≤ P
(∪x∈�W HW ,x,̂A

) ≤ |�W | max
x∈�W

P
(
HW ,x,̂A

)
(20)∧(23)≤ 2n6

(
40

δ

)μn

×
(

C2√
p(1 − p)

δ (log (n))3/2

)(1−μ)n

≤ (C′
p (log (n))3/2

)n
δ(1−2μ)n

for some constant C′
p depending only on p.

Using this lemma we now prove Theorem 1.7.

Proof. Fix a constant η ∈ (0, 1/4), and let μ = 1/2 − η. We apply Lemma 4.6, and take a
union bound over the possible subsets W ⊆ [n] (of which there are at most 2n). The lemma
thus tells us that there exists a constant C such that, conditioned on G ∈ Tn,p, the probability
that there exists a subset W ⊆ [n] of size μn such that |v2 (i)| ≤ δ/

√
n for all i ∈ WC is at

most
(C log (n))2n × δ2ηn.

Now choosing δ := (log (n))−2/η, we get that conditioned on G ∈ Tn,p, the probability that
there are not at least (1/2 − η) n entries of each eigenvector of Â of magnitude at least

1√
n (log (n))2/η

is at most (C/ log (n))2n. Using Theorem 2.2 we know that G ∈ Tn,p asymptotically almost
surely, and we are done, using the fact that L and Â have the same eigenvectors (see
Remark 1.9).
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I. Z. Ruzsa, and V. T. Sós, editors, Erdős Centennial, Volume 25 of Bolyai Society Mathematical
Studies, Springer Berlin Heidelberg, János Bolyai Math. Soc., Budapest, 2013, pp. 409–463.

[18] M. Rudelson and R. Vershynin, Delocalization of eigenvectors of random matrices with
independent entries, Duke Math J 164 (2015), 2507–2538.

Random Structures and Algorithms DOI 10.1002/rsa



BRAESS’S PARADOX FOR THE SPECTRAL GAP IN RANDOM GRAPHS 607

[19] M. Rudelson and R. Vershynin, Small ball probabilities for linear images of high-dimensional
distributions, Int Math Res Notices 2015 (2015), 9594–9617.

[20] M. Rudelson and R. Vershynin, No-gaps delocalization for general random matrices, preprint
arXiv:1506.04012, 2015.

[21] R. Steinberg and W. I. Zangwill, The prevalence of Braess’s paradox, Transport Sci 17 (1983),
301–318.

[22] T. Tao and V. Vu, Random matrices: Universality of local eigenvalue statistics up to the edge,
Commun Math Phys 298 (2010), 549–572.

[23] T. Tao and V. Vu, Random matrices: Universality of local eigenvalue statistics, Acta Math 206
(2011), 127–204.

[24] T. Tao and V. Vu, Random covariance matrices: Universality of local statistics of eigenvalues,
Ann Probab 40 (2012), 1285–1315.

[25] L. V. Tran, V. H. Vu, and K. Wang, Sparse random graphs: Eigenvalues and eigenvectors,
Random Struct Algorithms 42 (2013), 110–134.

[26] G. Valiant and T. Roughgarden, Braess’s paradox in large random graphs, Random Struct
Algorithms 37 (2010), 495–515.

APPENDIX A. A FORMULA FOR THE DIRICHLET FORM

The following calculation to simplify the expression for vTLG+v in the proof of Lemma 3.2
is straightforward but slightly cumbersome. We have:

vTLG+v =
∑

{i,j}∈E
{i,j}∩{a,b}=∅

(
1√
di

v(i) − 1√
dj

v(j)

)2

+
∑
j∼a
j �=b

(
1√

da + 1
v(a) − 1√

dj

v(j)

)2

+
∑
i∼b
i �=a

(
1√

db + 1
v(b) − 1√

di

v(i)

)2

+
(

1√
da + 1

v(a) − 1√
db + 1

v(b)

)2

= vTLGv

+
∑
j∼a
j �=b

⎧⎨⎩
(

1√
da + 1

v(a) − 1√
dj

v(j)

)2

−
(

1√
da

v(a) − 1√
dj

v(j)

)2
⎫⎬⎭

+
∑
i∼b
i �=a

{(
1√

db + 1
v(b) − 1√

di

v(i)

)2

−
(

1√
db

v(b) − 1√
di

v(i)

)2
}

+
(

1√
da + 1

v(a) − 1√
db + 1

v(b)

)2

= λ2(LG) + 2

√
da + 1 − √

da√
da + 1

∑
j∼a
j �=b

1√
dadj

v(a)v(j)

+ 2

√
db + 1 − √

db√
db + 1

∑
i∼b
i �=a

1√
didb

v(b)v(i) − 2v(a)v(b)√
(da + 1)(db + 1)

.
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Since v is the second eigenvector of LG, we have for every vertex i ∈ V that

λ2 (LG) v (i) = (LGv) (i) = v (i) − 1√
di

∑
j∼i

1√
dj

v (j) ,

and so for every i ∈ V we have

∑
j∼i

1√
didj

v (i) v (j) = (1 − λ2 (LG)) v (i)2 .

Thus we arrive at the expression in (4).

APPENDIX B. ADDITIONAL PROPERTIES OF TYPICAL ERDÕS-RÉNYI RANDOM
GRAPHS

In this appendix we prove Theorem 2.3, which states that several additional spectral prop-
erties hold for typical instances of G(n, p) (as defined in 2.1). It is likely that these lemmas
have been proven before and are well known; we include them here for completeness.

We first prove that the top eigenvectors of A and Â are close to �1 for typical instances of
G(n, p).

Lemma B.1. Let n and p be such that p ∈
(

10√
n , 1
)

. Let G ∈ Tn,p. Then the top eigenvectors

v1(A) and v1(̂A) of the unnormalized and the symmetric normalized adjacency matrices are
close to �1, in the following specific sense:

‖v1(A) − �1‖2 ≤ 2
log(n)√

pn
, and ‖v1(̂A) − �1‖2 ≤ 2

p

log (n)√
n

,

for all n large enough.

Proof. The top eigenvector v1(̂A) of Â is explicitly known, and so the corresponding

statement is simple to prove. We know that for a node i, v1(̂A) (i) = √
di/
√∑

j dj, while

�1 (i) = 1/
√

n. Since G ∈ Tn,p, we have that for all i, np− log(n)
√

n ≤ di ≤ np+ log(n)
√

n,
and that

∑
j dj ∈ [n2p − log(n)n, n2p + log(n)n

]
. Using these estimates, we have that for

all i, ∣∣∣v1(̂A) (i) − �1 (i)
∣∣∣ ≤ 2

p

log (n)

n
.

This then directly implies that ‖v1(̂A) − �1‖2 ≤ 2
p

log(n)√
n .

The top eigenvector v1(A) of the unnormalized adjacency matrix A does not have an
explicit formula. However, Mitra [15] proved nearly optimal entry-wise bounds for v1(A),
from which the desired result follows.

The following lemma is an extension of the result above, showing that projecting A and
Â onto the space orthogonal to �1 yields a matrix with smaller norm.
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Lemma B.2. Let n ∈ N. Let S ⊆ [n], let PS denote the coordinate projection onto S, and

let QS denote the orthogonal projection onto the space orthogonal to �1S. Let p ∈
(

10√
n , 1
)

,

and let G ∈ Tn,p. Then we have

‖QSPSÂ‖2 ≤ 2

p

log (n)√
n

, and ‖QSPSA‖2 ≤ 2
√

n

p
log (n)

for all n large enough.

Proof. The proofs for A and Â proceed identically; we give the proof only for Â. Recall
that for a matrix M, ‖M‖2 = supx:‖x‖2=1 ‖Mx‖2.

For any unit vector x we can write x = αv1(̂A) + √
1 − α2y for some α ∈ [−1, 1] and

some unit vector y that is orthogonal to v1(̂A). By the triangle inequality we have that∥∥QSPSÂx
∥∥

2
≤ ∥∥QSPSÂv1(̂A)

∥∥
2
+ ∥∥QSPSÂy

∥∥
2

,

and we bound each term separately. For the second term, we can use the submultiplicativity
of the norm and the bounds on the eigenvalues of G ∈ Tn,p:∥∥QSPSÂy

∥∥ ≤ ‖QS‖ ‖PS‖
∥∥Ây
∥∥ ≤ ∥∥Ây

∥∥ ≤ max
i≥2

∣∣λi (̂A)
∣∣ ≤ 8√

pn
.

For the first term, note that Âv1(̂A) = v1(̂A), and we then have that∥∥QSPSv1(̂A)
∥∥ ≤
∥∥∥QSPS

�1
∥∥∥+
∥∥∥QSPS

(
v1(̂A) − �1

)∥∥∥
≤ 0 + ‖QS‖ ‖PS‖

∥∥∥v1(̂A) − �1
∥∥∥ ≤ 2

p

log (n)√
n

,

where the last inequality follows from Lemma B.1.

The next lemma shows that for any subset of coordinates S ⊆ [n], the matrices 1
np QSPSA

and QSPSÂ behave similarly.

Lemma B.3. Let n ≥ 10. Let S ⊆ [n], let PS denote the coordinate projection onto S, and

let QS denote the orthogonal projection onto the space orthogonal to �1S. Let p ∈
(

log n√
n , 1
)

and let G ∈ Tn,p. Then for any unit vector x ∈ Rn with |〈x, �1〉| ≤ α, we have that

‖QSPSÂx − 1
np QSPSAx‖ ≤ 6p−5/2 (log (n))2 + α

√
n log (n)

n
.

Proof. We can write

Â =
(

1√
np I + D̃

)
A
(

1√
np I + D̃

)
,

where D̃ is a diagonal correction matrix with entries D̃ii = 1/
√

di −1/
√

np. Since G ∈ Tn,p,
np − √

n log (n) ≤ di ≤ np + √
n log (n) for all i, and thus it follows that

∣∣D̃ii

∣∣ ≤ 1
p3/2

log(n)

n

for all i. By the triangle inequality we thus have that

‖QSPSÂx − 1
np QSPSAx‖ ≤ ‖QSPSD̃AD̃x‖ + 1√

np‖QSPSD̃Ax‖ + 1√
np‖QSPSAD̃x‖,

and we bound each term separately.

Random Structures and Algorithms DOI 10.1002/rsa



610 ELDAN, RÁCZ, AND SCHRAMM

The first term can be bounded simply by the submultiplicativity of the norm:

‖QSPSD̃AD̃x‖ ≤ ‖QS‖‖PS‖‖D̃‖‖A‖‖D̃‖‖x‖
≤ 1 × 1 ×

(
1

p3/2

log (n)

n

)
× (np + √

n log (n)
)× ( 1

p3/2

log (n)

n

)
× 1

≤ 2

p2

(log (n))2

n
,

where the last inequality uses the fact that p >
log n√

n .
Next we bound the third term, which can also be done by the submultiplicativity of the

norm, together with Lemma B.2:

1√
np‖QSPSAD̃x‖ ≤ 1√

np
‖QSPSA‖‖D̃‖‖x‖

≤ 1√
np

(√
n
p log (n)

)
×
(

1

p3/2

log (n)

n

)
× 1 = p−5/2 (log (n))2

n
.

Finally, we bound the second term. By submultiplicativity again, we have that

1√
np‖QSPSD̃Ax‖ ≤ 1√

np‖QS‖‖PS‖‖D̃‖‖Ax‖ ≤ 1

p2

log (n)

n3/2
‖Ax‖,

so what remains is to bound ‖Ax‖. Let γ :=
〈
x, �1
〉
; by assumption |γ | ≤ α. We can then

write x = γ �1 +√1 − γ 2z for some unit vector z that is orthogonal to �1. Then we have that

‖Ax‖ = |γ | ‖A�1‖ +√1 − γ 2‖Az‖ ≤ α
(
np + √

n log (n)
)+ ‖Az‖ ≤ 2αnp + ‖Az‖,

where the last inequality uses the fact that p >
log n√

n . So what remains is to bound ‖Az‖. Let
θ := 〈z, v1 (A)〉. By Lemma B.1 and the Cauchy-Schwarz inequality we have that

|θ | = |〈z, v1 (A)〉| =
∣∣∣〈z, �1
〉
+
〈
z, v1 (A) − �1

〉∣∣∣ = ∣∣∣0 +
〈
z, v1 (A) − �1

〉∣∣∣
≤ ‖z‖

∥∥∥v1 (A) − �1
∥∥∥ ≤ 2

log (n)√
pn

.

We can write z = θv1 (A) + √
1 − θ 2y for some unit vector y that is orthogonal to v1 (A).

Then using the triangle inequality we have that

‖Az‖ ≤ |θ | ‖A‖ + ‖Ay‖ ≤ 2 log (n)√
pn

(
np + √

n log (n)
)+ 3
√

np (1 − p) ≤ 4
√

pn log (n) ,

where the last inequality uses the fact that p >
log n√

n . Putting the previous displays together,
we get that

1√
np‖QSPSD̃Ax‖ ≤ 2

p

log (n)

n

(
α
√

n + 2√
p log (n)

)
.

The bounds on the three terms put together concludes the proof.
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Lemma B.4. Fix p ∈ (0, 1) and let n ≥ 10. Let G ∈ Tn,p. Then

λ2(̂A) ≥ (1 − o (1))
1 − p

16
√

np
.

Proof. For convenience, write λi ≡ λi (̂A). We know that
∑n

i=1 λi = Tr(̂A) = 0, because
the diagonal entries of Â are all zero. Since λ1(̂A) = 1, we then have∑

i>1

λi = −1.

If G ∈ Tn,p, then we have

n∑
i=1

λ2
i = Tr(̂A2) =

∑
i,j∈[n]

Â2
ij = 2

∑
{u,v}∈E(G)

1

dudv
≥ n2p − n log (n)

(np + log (n) · √
np)2

= 1

p
· (1 − o(1)).

On the other hand, we have
n∑

i=2

λ2
i ≤ max

i>1
|λi| ×

n∑
i=2

|λi| ≤ 8√
np

n∑
i=2

|λi| ,

where in the second inequality we used that G ∈ Tn,p. Putting together the two previous
displays we get that

n∑
i=2

|λi| ≥ (1 − o (1))

√
n (1 − p)

8
√

p
.

Let k be such that λ2, . . . , λk ≥ 0 and λk+1, . . . , λn < 0. We then have

2nλ2 ≥ 2
k∑

i=2

λi =
n∑

i=2

|λi|+
n∑

i=2

λi ≥ (1 − o (1))

√
n (1 − p)

8
√

p
−1 = (1 − o (1))

√
n (1 − p)

8
√

p
,

and dividing by 2n gives the claim.

Lemma B.5. Fix n ≥ 10 and p ∈ (0, 1). Let G ∈ Tn,p. Let v be a unit eigenvector of Â
with eigenvalue λ, orthogonal to v1(̂A). Fix α ∈ [0, 1], and let S = {i ∈ [n] : |v (i) | ≤ α}.
Then ‖PSv‖2 ≥ 1

3

(
|λ|
λ2

− log(n)

α4λ2np

)
.

In particular, if �(λ2) = λ = �(n−1/2) and α ≥ log(n)

(np)1/8 , then ‖PSv‖ = �(1).

The analogous statement holds true for any eigenvector u of A with eigenvalue O(n1/2).

Proof. Let B = Â − v1vT
1 , so that ‖B‖ ≤ λ2(̂A). Let v = vS + vT , where T = SC . By

definition,
|λ| = |〈v, Bv〉| ≤ |〈vS, BvS〉| + 2|〈vS, BvT 〉| + |〈vT , BvT 〉|.

The first two terms can be bounded above by 3‖vS‖‖B‖ ≤ 3λ2‖vS‖, using Cauchy-Schwarz.
For the final term, we note that |T | ≤ 1

α2 , and since for G ∈ Tn,p, the entries of B are

bounded above in magnitude by log(n)

np , we have that 〈vT , BvT 〉 ≤ |T |2 log(n)

np ≤ log(n)

α4np
. Putting

the bounds together, we have

|λ| ≤ 3λ2‖vS‖ + log(n)

α4np
,

and straightforward manipulation yields the result.
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