
Received: 09 October 2018 Accepted: 10 June 2019 Published on: 22 October 2019

DOI: 10.1002/rsa.20896

R E S E A R C H A R T I C L E

Finding cliques using few probes

Uriel Feige1 David Gamarnik2 Joe Neeman3 Miklós Z. Rácz4

Prasad Tetali5

1Weizmann Institute of Science, Rehovot,

Israel
2MIT, Cambridge, Massachusetts
3UT Austin, Austin, Texas
4Princeton University, Princeton, New Jersey
5Georgia Tech, Atlanta, Georgia

Correspondence
Miklós Z. Rácz, Princeton University,

Princeton, NJ.

Email: mracz@princeton.edu

Funding information
This research was supported by the NSF, DMS

1811724. DMS-1407657. DMS-1811935;

Israel Science Foundation (grant No. 1388/16)

to [U.F.]; ONR grant N00014-17-1-2790 to

[D.G.]; Alfred P. Sloan Foundation to [J.N.];

National Science Foundation (NSF) grant

DMS 1811724 to [M.Z.R.]; National Science

Foundation (NSF) grants DMS 1407657 and

DMS 1811935 to [P.T.].

Abstract
Consider algorithms with unbounded computation time that

probe the entries of the adjacency matrix of an n vertex graph,

and need to output a clique. We show that if the input graph is

drawn at random from Gn, 1

2

(and hence is likely to have a clique

of size roughly 2 log n), then for every 𝛿 < 2 and constant 𝓁,

there is an 𝛼 < 2 (that may depend on 𝛿 and 𝓁) such that no

algorithm that makes n𝛿 probes in 𝓁 rounds is likely (over the

choice of the random graph) to output a clique of size larger

than 𝛼 log n.

KEYWORDS

random graphs, cliques, adaptive query model

1 INTRODUCTION

Consider an algorithm (with unlimited computation time) that may make up to q = n𝛿 adaptive probes,

to be defined later, 1 ≤ 𝛿 < 2, to the adjacency matrix of an input graph drawn randomly from Gn, 1

2

,

and needs to return a clique. What is the largest value of 𝛼 (as a function of q, or of 𝛿) such that the

size of the output clique is at least 𝛼 log n with probability at least
1

2
(over the choice of the random

graph)?1 (All logarithms are in base 2.) Observe that necessarily 𝛼 ≤ 2, because with high probability

the size of the largest clique in the input graph is roughly 2 log n (see Remark 4).

Remark 1. The set of q probes involves at most 2q vertices. If 2q < n, then at least n − 2q vertices

will never be involved in any of the probes. The algorithm may remove these vertices from the input

1The choice of requiring the algorithm to succeed with probability at least 1∕2 is just to make the question specific and easy to

state. We could require that the algorithm succeeds with probability tending to 1 as n → ∞—this would not change any of our

results. Furthermore, the impossibility results are stronger with this definition.

Random Struct Alg. 2020;56:142–153. wileyonlinelibrary.com/journal/rsa © 2019 Wiley Periodicals, Inc. 142

http://crossmark.crossref.org/dialog/?doi=10.1002%2Frsa.20896&domain=pdf&date_stamp=2019-10-22

FEIGE ET AL. 143

graph prior to making any probes—since the graph is random, it does not matter which vertices are

removed. Consequently, the assumption that 𝛿 ≥ 1 is without loss of generality, since when 𝛿 < 1,

then n is effectively replaced by 2q.

For 𝛿 = 2 the algorithm can probe all entries in the adjacency matrix, and determine the largest

clique. Hence we may also assume that 𝛿 < 2.

As a motivation for the types of algorithms considered in this paper, consider the following

algorithm for finding a clique in the random graph (see also [6] for a similar algorithm for coloring a

random graph). Run the greedy algorithm (iteratively choosing an arbitrary vertex and removing all

its nonneighbors) until 2c
√

log n vertices remain, for some choice of constant c > 0. This finds an initial

clique of size roughly log(n∕2c
√

log n) = log n− c
√

log n. Then exhaustively search among the remain-

ing 2c
√

log n vertices for a clique of size 2c
√

log n. Since the clique found by exhaustive search and the

initial clique from the greedy algorithm are fully connected with each other, this gives a clique of size

log n+ c
√

log n in time roughly n+n2c2

. It is easy to see that this algorithm inspects O(n) out of O(n2)
total edges.

In the probe model, we allow the algorithms to run in superpolynomial time, but restrict the number

of edges the algorithm is allowed to inspect. Specifically, we consider algorithms evolving dynamically

over a certain fixed T number of steps. In the first step t = 1, the algorithm is allowed to choose any

pair (i1, j1), 1 ≤ i1 < j1 ≤ n, and asks the status of this pair, namely whether it is an edge or not.

Depending on the outcome, the algorithm selects a second pair (i2, j2), 1 ≤ i2 < j2 ≤ n, and asks the

status of the pair (edge or not); it then selects (i3, j3), and so on. The algorithm runs till t = T , may use

unbounded computational time, and needs to produce a clique as large as possible.

If T = O(n), then such an algorithm can produce a clique of size
3

2
log n as follows. Run the greedy

algorithm until
√

q vertices remain and thereafter switch to exhaustive search. This gives a clique of

size log
n√
q
+ 2 log

√
q = log n + 1

2
log q. When q = Θ(n) the algorithm finds a clique of size

3

2
log n

while inspecting T = O(n) edges. In general, when q = Θ(n𝛿) and 𝛿 ≥ 1, the algorithm finds a clique

of size (1 + 𝛿∕2) log n while inspecting T = O(n𝛿) edges.

It is an interesting question whether there is any probing type algorithm that finds a clique larger

than (1+𝛿∕2) log n with T = O(n𝛿). Not being able to make progress on this question, we consider the

following modification of this question: what happens if the adaptiveness of the algorithm is limited, in

the sense that the algorithm is run in a limited number of stages? Specifically, we consider algorithms

which can probe the entries of the adjacency matrix in a constant number of rounds, where all probes

of a round are done in parallel. Precisely, fix a constant 𝓁. In step i = 1 the algorithm selects a subset

E1 of the set of pairs (i, j), 1 ≤ i < j ≤ n, and the status of all edges in E1 is revealed. Based on the

outcome a set E2 of pairs is selected by the algorithm and the status of edges in E2 is revealed. This is

continued until at most 𝓁 sets E1,… ,E𝓁 are created. The algorithm is limited by having∑
1≤i≤𝓁

|Ei| ≤ T .

When T = O(n𝛿), this is effectively a bound |Ei| = O(n𝛿), since 𝓁 = O(1).
Define 𝛼⋆ = 𝛼⋆ (𝛿,𝓁) as the supremum over 𝛼 such that there exists an algorithm that probes at

most n𝛿 entries of the adjacency matrix of a graph drawn at random from Gn, 1

2

, with the probes being

done in 𝓁 rounds, and outputs a clique of size at least 𝛼 log n with probability at least 1∕2. In this paper

we prove both lower and upper bounds on 𝛼⋆(𝛿,𝓁). Since the size of the largest clique in a random

graph is approximately 2 log n (see Remark 4), we immediately have that 𝛼⋆ ≤ 2. Our main result is

an upper bound that is strictly better than this.

144 FEIGE ET AL.

Theorem 2. For every 𝛿 < 2 and constant 𝓁 we have that 𝛼⋆(𝛿,𝓁) < 2.

We first present algorithms that find cliques in a few rounds of probes (𝓁 ∈ {1, 2, 3}) in Section 2,

providing lower bounds on 𝛼⋆(𝛿,𝓁). We then prove Theorem 2 in Section 3. In fact, we prove explicit

upper bounds as a function of 𝛿 and 𝓁. The following theorem collects our explicit upper and lower

bounds.

Theorem 3. We have the following explicit bounds.

1. (One round) For every 1 ≤ 𝛿 < 2 we have that 𝛼⋆(𝛿, 1) = 𝛿.
2. (Two rounds, lower bounds) For every 1 ≤ 𝛿 ≤

6

5
we have that 𝛼⋆(𝛿, 2) ≥ 4𝛿

3
. For every 6

5
≤ 𝛿 < 2

we have that 𝛼⋆(𝛿, 2) ≥ 1 + 𝛿

2
.

3. (Three rounds, lower bound) For every 1 ≤ 𝛿 < 2 we have that 𝛼⋆(𝛿, 3) ≥ 1 + 𝛿∕2.
4. (Upper bounds) For every constant 𝓁 we have that

𝛼⋆ (1,𝓁) ≤ 2
1− 1

2𝓁−1 .

For every 1 ≤ 𝛿 < 2 and constant 𝓁 we also have that

𝛼⋆(𝛿,𝓁) ≤ 2 − 𝛿

(
2 − 𝛿

2

)𝓁
.

A natural direction for future work is to improve the bounds in this paper. In particular, can one

prove an upper bound (smaller than 2) that holds regardless of the number of rounds 𝓁? Finally, it

would be desirable to find the actual value of 𝛼⋆(𝛿,𝓁).

Remark 4. The size of the largest clique in a random graph is very well understood. Define 𝜔n =
2 log n − 2 log log n + 2 log e − 1. Matula [8] showed that for any 𝜀 > 0, the clique number 𝜔(G) of a

random graph G drawn from Gn, 1

2

satisfies ⌊𝜔n − 𝜀⌋ ≤ 𝜔(G) ≤ ⌊𝜔n + 𝜀⌋ with probability tending to

1 as n → ∞; see also [2]. To simplify exposition, in the following we will often neglect lower order

terms and just state that the size of the largest clique is approximately 2 log n with high probability

(w.h.p.). In all such cases the arguments can be made precise by applying Matula’s result; we leave the

details to the reader.

1.1 Related work

The problem of finding structure in a random graph by adaptively querying the existence of edges

between pairs of vertices was recently introduced by Ferber, Krivelevich, Sudakov, and Vieira [4, 5].

In particular, they studied finding a Hamilton cycle [4] and finding long paths [5] in the adaptive query

model. Conlon, Fox, Grinshpun, and He [3] also study this problem, which they term the subgraph

query problem, focusing on finding a copy of a target graph H, and in particular studying the case

when H is a small (constant size) clique. All of these works focus on sparse random graphs.

In a similar vein, we study finding large cliques in an adaptive query model. The main difference

between our work and those mentioned above—apart from the underlying random graph being dense

or sparse—is that we study a query model where adaptiveness is limited to constantly many rounds of

probes. It would be interesting to understand the effect of limited adaptiveness on finding other types

of structures, such as a Hamilton cycle, long paths, or a particular target graph.

FEIGE ET AL. 145

2 ALGORITHMS

In this section we present algorithms that find cliques with one, two, and three rounds of probes. Inter-

estingly, the algorithm for 𝓁 = 3 rounds of probes described in Section 2.3 matches (to leading order)

the performance of the greedy algorithm presented in Section 1, which corresponds to the adaptive
probe model with no restriction on 𝓁 (𝓁 = ∞).

2.1 One round algorithm

Lemma 5. For every 1 ≤ 𝛿 < 2 we have that 𝛼⋆(𝛿, 1) = 𝛿.

Proof. Let q = n𝛿 . A simple one round algorithm probes all entries induced by
√

2q vertices. This

finds a clique of size approximately 2 log
√

2q ≃ log q (w.h.p.).

This is optimal up to lower order terms, due to the fact that in a complete graph, the pattern of q
probes that maximizes the number of complete subgraphs of any given size is a clique of size

√
2q.

(See Section 3 for details on the upper bound.) ▪

2.2 Two rounds

Lemma 6. For every 1 ≤ 𝛿 ≤
6

5
we have that 𝛼⋆(𝛿, 2) ≥ 4𝛿

3
. For every 6

5
≤ 𝛿 < 2 we have that

𝛼⋆(𝛿, 2) ≥ 1 + 𝛿

2
.

Proof. We first present the algorithm for the case when q = Θ(n).
Round 1: Probe all edges induced by a set S ⊂ V of size n1∕6, and all edges connecting S to T ⊂ V of

size n5∕6 (where S and T are disjoint).

Round 2: Let S′ ⊂ S be a clique of largest size within S, and let T ′ ⊂ T be the set of vertices within

T that are neighbors of all vertices of S′. Note that S′ has size approximately
1

3
log n and T ′ has size

approximately
√

n (w.h.p.). Now probe all edges in T ′, finding a clique of size approximately log n
(w.h.p.). Together with S′, this gives a clique of size approximately

4

3
log n (w.h.p.).

For q = Θ(n𝛿) the same algorithm applies, with different set sizes. For 1 ≤ 𝛿 ≤
6

5
, choose S

to have size n𝛿∕6 and T to have size n𝛿∕|S| = n5𝛿∕6. Then S′ has size approximately
𝛿

3
log n, while

T ′ has size approximately n𝛿∕2 (w.h.p.). The largest clique in T ′, together with S′, gives a clique of

size approximately
4𝛿

3
log n (w.h.p.). For

6

5
≤ 𝛿 < 2, choose S to have size n

1

2
− 𝛿

4 and T to have size

n ≤ n𝛿∕|S|. Then S′ has size approximately (1− 𝛿

2
) log n, while T ′ has size approximately n𝛿∕2 (w.h.p.).

The largest clique in T ′, together with S′, gives a clique of size approximately (1 + 𝛿

2
) log n (w.h.p.).▪

2.3 Three rounds

Lemma 7. For every 1 ≤ 𝛿 < 2 we have that 𝛼⋆(𝛿, 3) ≥ 1 + 𝛿∕2.

Proof. We first present the algorithm for the case when q = Θ(n).
Round 1: Probe all edges induced by a set S ⊂ V of size n1∕4.

Round 2: Let S′ ⊂ S be a clique of largest size within S, and note that S′ has size approximately
1

2
log n − 2 log log n (up to an additive constant, w.h.p.). Let T be a set of

n
log n

vertices, with S and T
disjoint. Probe all edges between S′ and T .

146 FEIGE ET AL.

Round 3: Let T ′ ⊂ T be a set of
√

n vertices that are neighbors of all vertices of S′. Such a set T ′ exists

with high probability. Probe all edges in T ′, finding a clique of size approximately log n (w.h.p.).

Together with S′, this gives a clique of size approximately
3

2
log n (w.h.p.).

For q = Θ(n𝛿) the same algorithm applies, with different set sizes. Choose S to have size n(1−𝛿∕2)∕2,

in which case S′ has size (1−𝛿∕2) log n−2 log log n (up to an additive constant, w.h.p.). The set T ′ will

now have size n𝛿∕2, and altogether we obtain a clique of size approximately (1 + 𝛿∕2) log n (w.h.p.).▪

3 UPPER BOUNDS

In proving upper bounds on the size of the clique that can be found, we use the following definition.

Definition 8. Given a graph G = (V ,E), a set S ⊂ V , and a parameter 0 ≤ 𝛽 ≤ 1, we say that S is

𝛽-covered if the subgraph induced by S contains at least 𝛽
(|S|

2

)
edges. Given positive integers n, m, and

k (with k < n), and a parameter 0 ≤ 𝛽 ≤ 1, we let Nn,m,k,𝛽 denote the maximum number of sets of size

k that can be 𝛽-covered in an n vertex graph with m edges.

The following theorem gives an upper bound on Nn,m,k,𝛽 .

Theorem 9. Let G = (V ,E) be a graph with n vertices and m edges. Then the number Nn,m,k,𝛽 of sets
S ⊂ V of size k that are 𝛽-covered satisfies:

• Nn,m,k,𝛽 ≤ m(1−
√

1−𝛽)k+1n(2
√

1−𝛽−1)k+2 when 𝛽 ≤
16

25
, and

• Nn,m,k,𝛽 ≤ m
√
𝛽k∕2+1n(1−

√
𝛽)k+2 when 𝛽 ≥

16

25
.

Moreover, these upper bounds are tight up to lower order multiplicative terms when k is much
smaller than m and n; specifically, these bounds are tight up to factors of kΘ(k).

We defer the proof of Theorem 9 to Section 3.1. Using Theorem 9 we are now ready to prove

Theorem 2. In fact, we state and prove a quantitative bound on 𝛼⋆(𝛿,𝓁), which implies Theorem 2. For

0 ≤ 𝛽 ≤ 1 and 1 ≤ 𝛿 < 2 define

f (𝛽, 𝛿) ∶=
⎧⎪⎨⎪⎩
(2 − 𝛿)

√
1 − 𝛽 + 𝛿 − 1, if 𝛽 ∈

[
0,

16

25

]
,

1 −
(

1 − 𝛿

2

)√
𝛽, if 𝛽 ∈

[
16

25
, 1
]
.

(1)

Theorem 10. We have that

𝛼⋆ (𝛿,𝓁) ≤ min
𝛽∈Δ𝓁−1

max
i∈{1,…,𝓁}

2f
(∑i

j=1 𝛽j, 𝛿
)

∑𝓁
j=i 𝛽j

, (2)

where f is defined in (1) and Δ𝓁−1 denotes the (𝓁 − 1)-simplex.
In particular, there exists a choice of 𝛽 ∈ Δ𝓁−1 in the formula above such that for every 1 ≤ 𝛿 < 2

and constant 𝓁 we have that

𝛼⋆(𝛿,𝓁) ≤ 2 − 𝛿

(
2 − 𝛿

2

)𝓁
. (3)

FEIGE ET AL. 147

Proof. Let A be a deterministic (w.l.o.g., because the input is randomized) algorithm that takes 𝓁
rounds, for some constant 𝓁, and makes q = n𝛿 probes in total, where 1 ≤ 𝛿 < 2. We set k = 𝛼 log n,

for some 1 < 𝛼 < 2, to be determined later as a function of 𝓁 and 𝛿. We will show that A fails (w.h.p.)

to find cliques of size k.

Let us fix nonnegative 𝛽1,… , 𝛽𝓁 satisfying
∑𝓁

i=1 𝛽i = 1, whose values will later be optimized as

a function of 𝛿. Consider 𝓁 identical copies of A. On a given input, all copies of A run in an identical

fashion and all tentatively produce the same output clique K (of size k). We say that round i is significant
if the number of probes to K in rounds 1 up to i − 1 is at most

∑i−1

j=1 𝛽j
(k

2

)
and the number of probes to

K in rounds 1 up to i is at least
∑i

j=1 𝛽j
(k

2

)
. Given K and the sequence of probes, there must be at least

one significant round; this can be proven by induction for instance. Copy i of A outputs K if the first

significant round is i, and outputs nothing otherwise. This view of multiple copies of A is identical (in

its output) to a single copy of A. We shall show that each copy succeeds to output a clique of size k
with probability less than 1∕(2𝓁), and hence by a union bound the algorithm fails with probability at

least 1∕2.

Consider now a single copy of A, say Ai. A set S ⊂ V of size k is referred to as an i-eligible set if

the number of probes to S in rounds 1 up to i − 1 is at most
∑i−1

j=1 𝛽j
(k

2

)
and the number of probes to S

in rounds 1 up to i is at least
∑i

j=1 𝛽j
(k

2

)
. By definition, Ai is only allowed to output an i-eligible set.

Note that to determine whether a set S is i-eligible, it suffices to see the answers to all probes up to

round i − 1, as this determines the sets of probes also in round i (and i-eligibility does not depend on

the answers to the probes in round i). Let Ei be the event that at least one of the i-eligible sets is indeed

a clique. Note that algorithm Ai produces no output unless event Ei holds, and hence the probability

that Ai succeeds is bounded above by the probability of Ei. For each i-eligible set, after round i − 1

there are at least
∑𝓁

j=i 𝛽j
(k

2

)
pairs of vertices that have not yet been probed and hence the probability

that this set is a clique is at most 2
−
∑𝓁

j=i 𝛽j(k
2
). To upper bound the number of i-eligible sets, observe that

at least
∑i

j=1 𝛽j
(k

2

)
pairs of vertices of a given i-eligible set are probed up to round i (we do not care

how these probes are distributed among rounds 1 to i). Therefore the number of i-eligible sets is at

most Nn,q,k,
∑i

j=1
𝛽j

(see Definition 8). A union bound thus gives us that

P (Ei) ≤ Nn,q,k,
∑i

j=1
𝛽j

2
−
∑𝓁

j=i 𝛽j(k
2
). (4)

By taking logarithms in Theorem 9 we have for every 0 ≤ 𝛽 ≤ 1 that

log Nn,n𝛿 ,k,𝛽 ≤ 𝛼f (𝛽, 𝛿) log2 n + 4 log n.

Consequently, using the notation si ∶=
∑i

j=1 𝛽j and taking logarithms in (4), we obtain that

log P (Ei) ≤ 𝛼f (si, 𝛿) log2 n + 4 log n − 1 − si−1

2

(
𝛼2 log2 n − 𝛼 log n

)
= 𝛼

{
f (si, 𝛿) −

1 − si−1

2
𝛼

}
log2 n +

(
1 − si−1

2
𝛼 + 4

)
log n.

We thus see that if 𝛼 > 2f (si, 𝛿) ∕(1 − si−1) then P (Ei) → 0 as n → ∞. If this holds for every

i ∈ {1,… ,𝓁}, this proves (2).

For 𝓁 = 1, the expression (2) gives 𝛼⋆ (𝛿, 1) ≤ 𝛿, which is tight (see Lemma 5). In the following

we assume that 𝓁 ≥ 2. For constant 𝓁 ≥ 2 and fixed 1 ≤ 𝛿 < 2, the expression in (2) gives an

optimization problem in 𝛽 ∈ Δ𝓁−1 to solve to obtain an explicit upper bound on 𝛼⋆(𝛿,𝓁). This is

148 FEIGE ET AL.

pursued in more detail in Section 3.2; in particular, the optimum is found when 𝛿 = 1. Here we simply

choose a particular 𝛽′ ∈ Δ𝓁−1 that implies (3) (and hence also proves Theorem 2).

Specifically, let

𝛽′i ∶= ri−1 r − 1

r𝓁 − 1

for i = 1,… ,𝓁, where

r ∶= 2

2 − 𝛿
.

Define also, as above, s′i ∶=
∑i

j=1 𝛽
′
j . By (2), in order to show (3), it suffices to show that

2f
(
s′i , 𝛿

)
1 − s′i−1

≤ 2 − 𝛿r−𝓁 (5)

for every i ∈ {1,… ,𝓁}.

First, for i = 𝓁 we have that s′𝓁 = 1 and hence f
(
s′𝓁 , 𝛿

)
= 𝛿∕2. We also have that 1 − s′𝓁−1

=(
r𝓁 − r𝓁−1

)
∕
(
r𝓁 − 1

)
. Hence

2f
(
s′𝓁 , 𝛿

)
1 − s′𝓁−1

= 𝛿
r𝓁 − 1

r𝓁 − r𝓁−1
= 2 − 𝛿

r𝓁 − r𝓁−1
,

where the second equality follows from the definition of r. Now (5) follows by dropping the r𝓁−1 term

in the right hand side of the display above.

We now turn to i ≤ 𝓁 − 1. Note that s′i ≤ s′𝓁−1
=
(
r𝓁−1 − 1

)
∕
(
r𝓁 − 1

)
< 1∕r = (2 − 𝛿)∕2 ≤ 1∕2

and hence by the definition of f (see (1)) we have that

2f
(
s′i , 𝛿

)
1 − s′i−1

=
2
{
(2 − 𝛿)

√
1 − s′i + 𝛿 − 1

}
1 − s′i−1

.

Using the bound
√

1 − s′i ≤ 1 − s′i∕2 we obtain that

2f
(
s′i , 𝛿

)
1 − s′i−1

≤ 2 −
(2 − 𝛿) s′i − 2s′i−1

1 − s′i−1

= 2 − 𝛿

r𝓁 − ri−1
.

Now (5) follows by dropping the ri−1 term in the display above. ▪

3.1 Bounding Nn,m,k,𝛽: an extremal problem

In this subsection we prove Theorem 9, which gives essentially the tight upper bound on Nn,m,k,𝛽 (see

Definition 8), as we will show.

Given integers k and 1 ≤ t ≤
(k

2

)
, let M(k, t) denote the minimum, over all k-vertex graphs H with

t edges, of the size (number of edges) of the maximum matching in H. We use the notation M(k, 𝛽)
when t is expressed as 𝛽

(k
2

)
.

FEIGE ET AL. 149

Lemma 11. Using the notation as above, Nn,m,k,𝛽 ≤
(m

M(k,𝛽)

)(n
k−2M(k,𝛽)

)
.

Proof. For a set S of size k to be 𝛽-covered, its induced subgraph must have a matching of size

M(k, 𝛽). We encode S by its matching edges followed by the remaining vertices in S. Given that G has

m edges, there are at most
(m

M(k,𝛽)

)
ways of encoding the matching edges, and then at most

(n
k−2M(k,𝛽)

)
ways of choosing the remaining vertices. ▪

Lemma 12. Define

𝜇(k, 𝛽) ∶= min

{√
𝛽

2
,

(
1 −

√
1 − 𝛽

)}
k. (6)

We then have that ⌊𝜇(k, 𝛽)⌋ ≤ M(k, 𝛽) ≤ ⌊𝜇(k, 𝛽)⌋ + 1.

Proof. Let H be an arbitrary graph on k vertices. It is well known (see, e.g., [7]) that if the maximum

matching in H has size M, then H has a Gallai-Edmonds (GE) decomposition satisfying c−s = k−2M.

Here c is the number of odd components C1,… ,Cc in the GE decomposition, s is the size of the

separator set S, and edges exiting an odd component can only be connected to S. Let R denote the set

of remaining vertices. Every maximum matching matches all of R to itself, matches each vertex of S to

a different odd component, and leaves exactly one unmatched vertex in every odd component that has

no vertex matched to S. The value of a GE-decomposition is c − s, and an optimal GE-decomposition

is one that maximizes c − s. If c > 0 in a GE-decomposition, then necessarily c > s.

Let H be a graph with k vertices and t edges for which the size of the maximum matching is M(k, t).
We make a structural claim that (at least) one of the following holds:

1. The optimal GE-decomposition for H is a clique plus a set of isolated vertices. If the clique

size is even it serves as R in the GE-decomposition, whereas if its size is odd it serves as

an odd component. In any case, every isolated vertex serves as an odd component, and S is

empty.

2. The optimal GE-decomposition for H is a (complete) split graph, namely, a clique that serves

as S, odd components that are singleton vertices, and edges between each odd component

and all of S. (Note that for the split graph to be a GE-decomposition it must be that the

independent set is larger than the clique, because c − s needs to be positive.)

3. M(k, t) = M(k, t + 1).

To prove the claim, we need to show that if the optimal GE-decomposition for H is neither a clique

nor a split graph, then we can find a graph with t+1 edges that has a GE-decomposition with the same

value as that for H.

W.l.o.g. we may assume that R ∪ S is a clique, as otherwise we can add an edge to R ∪ S without

decreasing c − s. Thereafter, if there are no odd components the GE-decomposition is a clique and

we are done. Hence we may assume that there are odd components and c > s. As with the argument

that R ∪ S is a clique, if we cannot add edges to H while preserving c − s, it must be that each odd

component is a clique, and every vertex in every odd component is connected to every vertex in S (if

S exists). Moreover, R is necessarily empty, as otherwise we can merge it with an odd component (the

component remains odd because R is necessarily even), and completing that odd component to a clique

we gain edges without changing c − s.

150 FEIGE ET AL.

There remain several cases to consider:

1. There is exactly one odd component, C1. Then S is empty, and R was already previously

assumed to be empty. Hence H is just the odd clique C1, and so is its GE-decomposition.

2. There are (at least) two odd components that are not singletons, say C1 and C2. Then move

all but one vertex from C1 to C2 (and remove the edges created between C1 and C2, and make

C2 into a clique). The number of edges increases without decreasing c − s.

3. S is empty. From the previous two cases we may assume that there are at least two odd

components, and at most one of them (say C1) is a clique. As R is empty as well, then the

GE-decomposition is a clique (C1).

4. S is nonempty (and R is empty, as argued above), there are at least s + 1 odd components,

and exactly one odd component (say C1) is not a singleton (if C1 is a singleton then we have

a split graph, as desired).

a. |C1| ≥ c. Merge S and s singletons into C1, add edges to the new C′
1

to make it a clique,

and disconnect the remaining singletons from S. The GE-decomposition becomes a

clique C′
1
, and the value c − s does not change. The number of edges gained is s|C1|,

and lost is (c − 1 − s)s, so we strictly gained edges, as desired.

b. c > |C1|. Increase both c and s by one by making one vertex v of C1 a new singleton

component C′
1
, and moving one vertex u from C1 to S. After updating the edges, we lose|C1| − 2 edges of v, but gain c − 1 new edges to u, so the number of edges increases.

Having proved our structural claim, it remains to show the quantitative bounds. For the lower

bound, it suffices to check the size of the maximum matching in a clique and in a split graph, each

with 𝛽
(k

2

)
edges, since the case that M(k, t) = M(k, t + 1) is handled by considering t + 1, which only

increases the computed bounds. For the upper bound it suffices to check the size of the maximum

matching in graphs that are nearly a clique and nearly a split graph.

In a clique of size K the size of the maximum matching is
⌊

K
2

⌋
. Since the number of edges in the

clique is
(K

2

)
= 𝛽

(k
2

)
, we must have K ≥

√
𝛽k, which implies that the size of the maximum matching

is at least
⌊√

𝛽

2
k
⌋

.

For the matching upper bound, let K be such that
(K

2

)
< 𝛽

(k
2

)
≤
(K+1

2

)
. The first inequality implies

that K <
√
𝛽k + 1. Now define a graph that is a clique of size K with an additional vertex that

is connected to 𝛽
(k

2

)
−
(K

2

)
vertices of the clique, and k − (K + 1) singleton vertices. The size of

the maximum matching in this graph is
⌊

K+1

2

⌋
and by the inequality above we have that

⌊
K+1

2

⌋
≤⌊√

𝛽

2
k
⌋
+ 1.

In a (complete) split graph, let c denote the size of the independent set. The number of nonedges

is
(c

2

)
= (1 − 𝛽)

(k
2

)
and hence c ≤

⌈√
1 − 𝛽k

⌉
. The size of the maximum matching is k − c, since in

the maximum matching every vertex of the clique is matched to a vertex in the independent set, and

we have that k − c ≥

⌊(
1 −

√
1 − 𝛽

)
k
⌋

.

For the matching upper bound, let c be such that
(c

2

)
≤ (1 − 𝛽)

(k
2

)
<
(c+1

2

)
. The second inequality

implies that c ≥

⌈√
1 − 𝛽k

⌉
− 1. We define a graph on k vertices as follows. Start with a split graph

on k vertices with an independent set of size c. Now take a vertex v from the clique of the split graph

and remove (1 − 𝛽)
(k

2

)
−
(c

2

)
edges connecting v to vertices of the independent set. The resulting

FEIGE ET AL. 151

graph has 𝛽
(k

2

)
edges and its maximum matching has size k − c. By the inequality above we have that

k − c ≤

⌊(
1 −

√
1 − 𝛽

)
k
⌋
+ 1. ▪

Proof of Theorem 9. By Lemma 11 and a simple bound on binomial coefficients we obtain that

Nn,m,k,𝛽 ≤

(
m

M(k, 𝛽)

)(
n

k − 2M(k, 𝛽)

)
≤ mM(k,𝛽)nk−2M(k,𝛽).

Using Lemma 12 we thus obtain that

Nn,m,k,𝛽 ≤ m𝜇(k,𝛽)+1nk−2𝜇(k,𝛽)+2,

where recall the definition of 𝜇(k, 𝛽) from (6). Theorem 9 now follows by observing that 𝜇(k, 𝛽) =(
1 −

√
1 − 𝛽

)
k when 𝛽 ≤

16

25
and 𝜇(k, 𝛽) =

√
𝛽

2
k when 𝛽 ≥

16

25
.

This bound is tight (up to factors of kΘ(k)) as can be seen by the following examples. First, let

𝛽 ≤
16

25
. Suppose first that m < kn. Consider m edges that form a split graph with a clique K of size

(1 −
√

1 − 𝛽)k joined to an independent set I of size roughly
m
k

. Any choice of
√

1 − 𝛽k vertices from

I completes together with K a split graph with 𝛽
(k

2

)
edges. If m > kn, then make K of size m∕n and I

of size n − |K|. Any choice of
√

1 − 𝛽k vertices from I and (1 −
√

1 − 𝛽)k vertices from K forms a

split graph with 𝛽
(k

2

)
edges.

Now let 𝛽 ≥
16

25
. Consider m edges that form a clique of size

√
2m. Any choice of

√
𝛽k vertices

from the clique and (1 −
√
𝛽)k vertices from the rest of the graph gives a subgraph with 𝛽

(k
2

)
edges.

▪

3.2 Explicit upper bounds for 𝜹 = 1

The expression (2) in Theorem 10 gives an optimization problem to compute an upper bound on

𝛼⋆ (𝛿,𝓁). As mentioned in the proof of Theorem 10, for 𝓁 = 1 this gives 𝛼⋆ (𝛿, 1) ≤ 𝛿, which is tight.

Here we investigate the optimization problem of (2) for other values of 𝓁. In particular, we solve this

optimization problem for every 𝓁 when 𝛿 = 1.

For 𝓁 = 2, the expression (2) gives

𝛼⋆ (𝛿, 2) ≤ min
𝛽∈[0,1]

max

{
2f (𝛽, 𝛿) , 𝛿

1 − 𝛽

}
.

For the two expressions in the display above to be less than 2, we must have 𝛿∕(1 − 𝛽) < 2, or

equivalently, 𝛽 < 1 − 𝛿∕2 ≤ 1∕2. Hence recalling the definition of f (see (1)) we obtain that

𝛼⋆ (𝛿, 2) ≤ min
𝛽∈
[
0,

1

2

]max

{
2
(
(2 − 𝛿)

√
1 − 𝛽 + 𝛿 − 1

)
,

𝛿

1 − 𝛽

}
.

Observe that the first expression in the display above is decreasing in 𝛽, while the second expression

is increasing in 𝛽. Therefore the unique minimizer 𝛽′ = 𝛽′ (𝛿) satisfies

2
(
(2 − 𝛿)

√
1 − 𝛽′ + 𝛿 − 1

)
= 𝛿

1 − 𝛽′

152 FEIGE ET AL.

and we have that

𝛼⋆ (𝛿, 2) ≤
𝛿

1 − 𝛽′
.

For 𝛿 = 1 we obtain that 𝛽′(1) = 1 − 2−2∕3 and thus 𝛼⋆ (1, 2) ≤ 22∕3 < 1.588.

Many of the observations made for the case of 𝓁 = 2 above also apply for 𝓁 ≥ 3. We may write

the expression (2) as follows:

𝛼⋆ (𝛿,𝓁) ≤ min
𝛽∈Δ𝓁−1

max

{
max

i∈{1,…,𝓁−1}

2f (si, 𝛿)
1 − si−1

,
𝛿

𝛽𝓁

}
,

where si =
∑i

j=1 𝛽j as before. If 𝛽′ = 𝛽′ (𝛿) denotes the optimizer then we must have 𝛽′𝓁 > 𝛿∕2 ≥ 1∕2.

This implies that s′i ≤ s′𝓁−1
≤ 1∕2 for every i ≤ 𝓁 − 1, where s′i =

∑i
j=1 𝛽

′
j . Hence recalling the

definition of f again we obtain that

𝛼⋆ (𝛿,𝓁) ≤ min
𝛽∈Δ𝓁−1,𝛽𝓁≥

𝛿

2

max

⎧⎪⎨⎪⎩ max
i∈{1,…,𝓁−1}

2
(
(2 − 𝛿)

√
1 − si + 𝛿 − 1

)
1 − si−1

,
𝛿

𝛽𝓁

⎫⎪⎬⎪⎭ .

This simplifies when 𝛿 = 1:

𝛼⋆ (1,𝓁) ≤ min
𝛽∈Δ𝓁−1,𝛽𝓁≥

1

2

max

{
max

i∈{1,…,𝓁−1}

2
√

1 − si

1 − si−1

,
1

𝛽𝓁

}
.

The optimizer 𝛽′ = 𝛽′(1) is such that all 𝓁 expressions on the right hand side of the display above are

equal. That is, we must have

2
√

1 − s′i
1 − s′i−1

= 1

𝛽′𝓁

for every i ∈ {1,… ,𝓁 − 1}. This set of equations can be solved and we obtain the following optimizer:

𝛽′
1
= 1 − 2

− 2

2𝓁−1 ,

𝛽′i = 2
− 2i−2

2𝓁−1 − 2
− 2i+1−2

2𝓁−1 for i ∈ {2,… ,𝓁 − 1} ,

𝛽′𝓁 = 2
− 2𝓁−2

2𝓁−1 .

The optimum is therefore 1∕𝛽′𝓁 = 2
2𝓁−2

2𝓁−1 . In conclusion, we have proved the following corollary of

Theorem 10.

Corollary 13. We have that

𝛼⋆ (1,𝓁) ≤ 2
1− 1

2𝓁−1 .

Numerically, the bound above gives the following for small 𝓁: 𝛼⋆ (1, 2) ≤ 22∕3 < 1.588, 𝛼⋆ (1, 3) ≤
26∕7 < 1.812, 𝛼⋆ (1, 4) ≤ 214∕15 < 1.910, and 𝛼⋆ (1, 5) ≤ 230∕31 < 1.956. These upper bounds should

be compared to the lower bounds 𝛼⋆ (1, 2) ≥ 4∕3 and 𝛼⋆ (1,𝓁) ≥ 𝛼⋆ (1, 3) ≥ 3∕2 for 𝓁 ≥ 3 (see

Section 2).

FEIGE ET AL. 153

ACKNOWLEDGEMENTS

The problem considered here was proposed by David Gamarnik at the American Institute of Mathe-

matics workshop “Phase transitions in randomized computational problems” in June 2017 [1]. It arose

from a discussion with Madhu Sudan, whose contribution to the inception of the problem is gratefully

acknowledged. We thank AIM and the organizers, Amir Dembo, Jian Ding, and Nike Sun, for putting

together the workshop. We also thank Jane Gao for initial discussions and two anonymous referees for

their feedback.

REFERENCES
1. AimsPL, Phase transitions in randomized computational problems, 2017, available at http://aimpl.org/phaserandom.

2. B. Bollobás and P. Erdős, Cliques in random graphs, Math. Proc. Camb. Philos. Soc. 80 (1976), 419-427.

3. D. Conlon, J. Fox, A. Grinshpun, and X. He, Online Ramsey numbers and the subgraph query problem, 2018,

available at https://arxiv.org/abs/1806.09726.

4. A. Ferber, M. Krivelevich, B. Sudakov, and P. Vieira, Finding Hamilton cycles in random graphs with few queries,

Random Structures Algorithms. 49 (2016), 635-668.

5. A. Ferber, M. Krivelevich, B. Sudakov, and P. Vieira, Finding paths in sparse random graphs requires many queries,

Random Structures Algorithms. 50 (2017), 71-85.

6. M. Krivelevich and B. Sudakov, Coloring random graphs, Inform. Process. Lett. 67 (1998), 71-74.

7. L. Lovász and M.D. Plummer, Matching theory, American Mathematical Society, Providence, RI, 2009.

8. D.W. Matula, The employee party problem. Notices of the American Mathematical Society, American Mathematical

Society, Providence, RI, Vol. 19, p. A382, 1972.

How to cite this article: Feige U, Gamarnik D, Neeman J, Rácz MZ,

Tetali P. Finding cliques using few probes. Random Struct Alg. 2020;56:142–153.

https://doi.org/10.1002/rsa.20896

http://aimpl.org/phaserandom
https://arxiv.org/abs/1806.09726

