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Abstract—Controlling and stabilizing systems involves
countering the impact of explicit communication con-
straints in addition to inherent system model param-
eter uncertainty and random noise. Here we use an
information-theoretic approach to jointly tackle all three
issues and understand their interactions. Our main result
bounds the minimum communication rate required for the
mean-square stability of a system with uncertain system
gain. Moreover, our techniques extend to provide a finer
characterization of the required rate when specific finite
bounds on the second moment of the state are desired.

1. INTRODUCTION

Control systems with physically distributed sensors
and actuators are essential to building autonomous agents
such as self-driving cars and drones, and control al-
gorithms for such systems must be implemented over
communication networks. These systems may be rapidly
evolving and difficult to model at the timescale that the
control must act at. As a result, system designers must
account for information bottlenecks as well as uncertain
model parameters as they allocate limited resources in
designing the system.

This paper studies the interactions between model
uncertainty and rate limitations. We consider the control
of the following system:

Xt+1 = AtXt + Ut +Wt. (1)

Here Xt is the (scalar) state of the system at time
t. The system gains {At}t≥0 are drawn i.i.d. from a
known distribution PA (having a density) and model the
uncertainty the controller has about the system. The ad-
ditive disturbances {Wt}t≥0 are also i.i.d. from a known
distribution PW . The controller chooses the control Ut
causally based on observations Y t

0 := {Y0, . . . , Yt} that
are transmitted over a rate-limited noiseless channel by
an encoder co-located with the system. Our goal is to
stabilize the system in a mean-square sense, which thus
requires the co-design of an encoder-controller pair.

Without the rate limitation, the system in (1) is mean-
square stabilizable if and only if σ2A < 1, where σ2A
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Fig. 1. Rate-limited control: The control Ut can be any function of
the observations Y t0 . The encoder chooses Yt, an encoding of the state
Xt, such that H(Yt | Y t−1

0 ) ≤ R. The system gains {At}t≥0 are
i.i.d. random variables, and so are the additive disturbances {Wt}t≥0.

is the variance of At (see [1]). If the system gain is
constant, i.e., At = a for every t, then a communication
rate of R > log |a| is necessary and sufficient for mean-
square stabilizability (see, e.g., [2], [3], [4], [5]). We
simultaneously consider a random system gain and lim-
ited communication rate in order to provide a perspective
on the parameter uncertainty that is compatible with
information-theoretic rate limits.

Our goal is to estimate the critical rate for stability,
R∗, defined as the infimum of R for which there exists a
variable-rate transmission process {Yt}t≥0 and a causal
control strategy {Ut}t≥0 satisfying the following:
• Transmission rate: H(Yt | Y t−1

0 ) ≤ R for every t;
• Mean-square stability: lim supt→∞ E[X2

t ] <∞.
The following theorem illustrates our results when At

is Gaussian.

Theorem 1.1. Assume PA is Gaussian with mean µA
and variance σ2A < 1, and that PW has a density. Then

R∗ ≥ max

{
1

2
log

µ2A
1− σ2A

− 1

2
,
1

2
log
(
µ2A + σ2A

)}
,

and further

R∗ ≤ 1

2
log

µ2A
1− σ2A

+ log

(
1 + log

(
3 + µA√

(1−σ2
A)

))
+ 2 + log e.



The interesting regime for this result is when the
system is not self-stabilizing, i.e., when µ2A + σ2A > 1.
Our primary region of interest is when σ2A goes to 1,
in which case the rate goes to infinity, even though µA
is bounded. In particular, when 1 − σ2A = ε ↓ 0, and
µA = O(1), we obtain that
1

2
log

1

ε
−O(1) ≤ R∗ ≤ 1

2
log

1

ε
+log log

1

ε
+O(1), (2)

thus the critical rate is 1
2 log

1
ε up to first order in 1

ε .
The second term in the lower bound of Thm. 1.1 is

effective in the regime where σ2A is close to zero. Note
that when σ2A = 0, this reduces to the known R∗ ≥
log |a| bound from the data-rate theorems.

A more precise version of this theorem is presented
in Sec. 3, together with further results for more general
distributions PA and PW . We believe that it should be
possible to close the additive gap in (2) above. This
gap might be connected to the tightness of Shannon’s
lower bound [6], which is known to be tight in the low-
distortion regime but can be loose in the high-distortion
regime [7], [8], [9], [10], [11].

Finally, while mean-square stability captures the limits
of stabilizability, it is desirable to understand how much
extra rate is required on top of this absolute minimum
in order to achieve a particular bound on the second
moment of the state. Our techniques extend to provide
refined bounds on the extra rate required to achieve the
tighter bound. These results are also provided in Sec. 3.

A. Proof techniques

Our proof of the converse uses Shannon’s rate-
distortion lower bound to bound the expected distortion
of the state. The technique allows us to avoid a precise
characterization of the complex distributions arising at
each step. Furthermore, at each time t, we provide side
information to the controller in the form of either the
precise previous state of the system (i.e., Xt−1) or the
random gain of the previous step (i.e., At−1), and these
two cases give the two parts of the converse bound.

The achievable scheme uses a simple uniform quanti-
zation to achieve the bound.

B. Related work

Our setup is inspired by the uncertainty threshold
principle [1] and the extensive work to understand data-
rate theorems [3], [5]. The results in [12, Ch. 2] also
motivated this exploration, since they suggest the possi-
bility of a unifying information-theoretic perspective that
can quantify the joint impact of parameter uncertainty
and rate constraints. We aim to develop an understanding

that can mesh with our understanding of the impact of
multiplicative noise on the actuation channel [13] and on
the observation channel [14], [15].

This informational perspective complements the ex-
plorations of parameter uncertainty in the robust control
literature [16], [17]. Our interest in this paper is in under-
standing how large uncertainty on the system interacts
with an explicit data-rate constraint.

The rate-limited control of a system with uncertain
system gain was first considered by Martins et al. [18].
Their converse bound gives a result of the flavor that
if the system is stabilizable then R > 1

2 log(µ
2
A + σ2A),

a result that we also obtain. This is of interest when
σ2A is small, but is not tight when σ2A goes to 1.
Phat et al. [19] also consider rate-limited control with
uncertain parameters from a robust control perspective.
Their setup differs from ours in that it is not stochastic,
and only considers bounded support for the uncertainty
on the parameters. With this they provide a uniform
quantization scheme that can stabilize the system.

Recently, Okano and Ishii made progress on under-
standing rate-limited control of uncertain systems from
a worst-case perspective [20], [21], [22]. However, they
also bound the support of the parameter uncertainty
and do not consider additive noise in their model.
The achievable scheme in [22] proposes a non-uniform
optimal quantizer for their problem that uses bins with
logarithmically decreasing lengths, with the bins closest
to zero being the largest. However, this cannot work in
the setting where both At and Xt can have unbounded
support, as is the case in our work. We use a uniform
quantizer with variable-rate transmission since we as-
sume that the support of Xt, At,Wt might be unbounded.

Beyond mean-square stability our work also provides
a bound on the impact of additive noise in the system
and calculates the extra rate required to ensure that
the second moment of the system state is bounded to
within a specified cost. This builds on work in [23], and
is similar to bounds of Nair et al. [5] for rate-limited
systems without parameter uncertainty. It is also closely
related to the idea of sequential rate-distortion [24].

2. PROBLEM SETUP

We consider the scalar control system in (1) with
system state Xt at time t. The initial state X0 is random,
and has finite second moment, i.e., σ2X0

< ∞. The
system gains {At}t≥0 are drawn i.i.d. from a distribution
PA, with mean µA and variance σ2A. The Wt are drawn
i.i.d. from PW with mean 0 and variance σ2W , and



independently from everything else in the system. Both
PA and PW are known to the encoder and the controller.

At each time t, the encoder observes the system
state Xt and transmits message Yt (that can depend
on all previous messages Y t−1

0 and states Xt
0) over

a noiseless rate-limited channel to the controller. We
allow Yt ∈ {0, 1}? := ∪n≥0{0, 1}n, and let `(Yt)
represent the length of Yt. The rate-limit we assume
is on the entropy of the transmitted message: we must
have H(Yt | Y t−1

0 ) ≤ R. The controller takes action Ut
at time t based on all the observations it has received
till that point, Y t

0 . Such an encoder-controller pair with
control strategy {Ut}t≥0 is said to have a rate-limit of R.

The controller’s objective is to ensure mean-square
stability of the system as defined below.

Definition 2.1. We say that the system (1) is mean-square
stabilizable if there exists a causal encoder-controller
pair such that supt E[X2

t ] <∞.

In addition to mean-square stabilizability, we also
define a more refined notion of stability, when a precise
bound on the second moment is desired.

Definition 2.2. We say that the system (1) is mean-square
stabilizable with cost D, if there exists a causal encoder-
controller pair such that lim supt E[X2

t ] ≤ D.

Throughout the paper all logarithms are base 2.

3. RESULTS

We are now ready to present our results, starting
with the converse, and then showing that this bound is
essentially tight. Recall from the uncertainty threshold
principle that if σ2A ≥ 1, then it is impossible to stabilize
the system in a mean-square sense. This is due to the
fact that the multiplicative system gain acts on the state
of the system after the control has been applied.1 On
the other hand, if µ2A + σ2A < 1, then the system (1) is
trivially stabilizable by applying no control (Ut = 0 for
every t). We thus assume in the following that σ2A < 1
and µ2A + σ2A ≥ 1 to focus on the interesting cases.

A. Characterizing mean-square stability

We start by showing the limits of stabilizability when
the distribution PA has a density pA. For a random
variable X having a density on R, we recall that the

1One can show that (1) implies E[X2
t+1] ≥ σ2

AE[X2
t ] + σ2

W , so
when σ2

A > 1, then E[X2
t ] grows exponentially in t. When σ2

A = 1,
we have E[X2

t ] ≥ tσ2
W , which is unbounded in t when σ2

W > 0. We
ignore the knife-edge case of σ2

A = 1 and σ2
W = 0.
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Fig. 2. This figure plots the rate bounds from Thm. 3.1 and Thm. 3.2
as a function of σ2

A, assuming PA is Gaussian with µA = 2 and also
σ2
W = 1. The achievability is the solid blue line that plots (4) and

the dotted red line is the converse from (3).

entropy-power of X is given by N (X) = 1
2πe2

2h(X),
where h(X) is the differential entropy of X .

Theorem 3.1. Assume that PA has a density pA, that PW
has a density pW , and that σ2A < 1. If the system (1)
is mean-square stabilizable using a causal encoder-
controller pair with rate-limit R, then

R ≥ max

{
1

2
log

µ2AN(A)

1− σ2A
,
1

2
log(µ2A + σ2A)

}
. (3)

This converse result is the combination of two bounds
stated together. The assumption above that PA has a
density is only used to obtain the 1

2 log
µ2

AN(A)
1−σ2

A
bound,

while the assumption that PW has a density is only used
to obtain the other bound of 1

2 log(µ
2
A + σ2A).

The converse result of Theorem 3.1 is complemented
by the following sufficient condition, which is achieved
using a simple uniform quantization scheme.

Theorem 3.2. Assume that σ2A < 1. If

R ≥ 1

2
log

µ2A
1− σ2A

+ log

(
1 + log

(
3 + µA√

(1−σ2
A)

))
+ 2 + log e, (4)

then the system (1) can be mean-square stabilized using
a causal encoder-controller pair with rate-limit R.

When PA is Gaussian, then N(A) = σ2A and Theo-
rem 3.1 and Theorem 3.2 give Theorem 1.1.

Both the necessary and sufficient bounds on the rate
blow up as 1

2 log
1

1−σ2
A

as σ2A ↗ 1, as seen in Fig. 2.



B. Characterizing mean-square stability with finite cost

By considering only the effect of the uncertain system
gain acting on the additive noise, one can show (see
Section 4-B) that for the system (1), under any causal
encoder-controller pair, we must have:

lim inf
t→∞

E[X2
t ] ≥

σ2W
1− σ2A

. (5)

For any D > σ2
W

1−σ2
A

, we characterize the critical rate
R required to mean-square stabilize with cost D the
system (1) (recall Def. 2.2). These results bound how
the required rate blows up as D ↘ σ2

W

1−σ2
A

.

Theorem 3.3. Assume that PA has a density pA, that
PW has a density pW , and that σ2A < 1. If the system (1)
is mean-square stabilizable with cost D using a causal
encoder-controller pair with rate-limit R, then

R ≥ max

{
1

2
log

µ2AN(A)

1− σ2A
,
1

2
log(µ2A + σ2A),

1

2
log

(
µ2A

1− σ2A
× D ·N(A) +N(W )

D − σ2
W

1−σ2
A

)}
. (6)

Theorem 3.4. For any D > σ2
W

1−σ2
A

, the system (1) can be
mean-square stabilized with cost D. This is achievable
using an encoder-controller pair with rate-limit R for
any

R >
1

2
log

µ2A
1− σ2A

+ logMD, (7)

where

MD = e×

3
√

1−σ2
A

µA
+

√
D+σ2

X0

D− σ2
W

1−σ2
A


×

1 + log

3 +
√

µ2
A

1−σ2
A

√
D+σ2

X0

D− σ2
W

1−σ2
A

 .

The third term in (6) represents an extra rate penalty
that must be paid to contain the second moment of the
system below D. The logMD term in (7) plays a similar
role for the quantization scheme. As D ↘ σ2

W

1−σ2
A

, both

terms blow up as −1
2 log

(
D − σ2

W

1−σ2
A

)
. This is plotted in

Fig. 3, along with a simulation of the achievable strategy.
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Fig. 3. This figure plots the rate bounds from Thm. 3.3 and Thm. 3.4
as a function of D, assuming PA and PW are Gaussian with µA = 2,
σ2
A = .9, and µW = 0, σ2

W = 1, respectively. The achievability
is the solid blue line that plots (7) and the dotted lines plot the
converse bound for cost D (purple) and for mean-squared stability
from Thm. 5.1 (red). The achievability and converse bounds blow
up as D ↘ σ2

W

1−σ2
A

= 10. The purple line with points demarcated
plots an estimate of the encoder output entropy by simulating the
proposed control strategy. This estimate was computed using a normal
approximation of the state distribution at steady state.

4. KEY OBSERVATIONS

A. The evolution of the second moment

For any control {Ut}t≥0 we have that

E[X2
t+1] = E[(AtXt + Ut +Wt)

2]

= E[(AtXt − µAXt + µAXt + Ut +Wt)
2]

= E[((At − µA)Xt + µAXt + Ut)
2] + E[W 2

t ],
(8)

since Wt is independent of all the other terms in the
expectation. Now we note that (At−µA)Xt and (µAXt+
Ut) in (8) are orthogonal:

E[(At − µA)Xt · (µAXt + Ut)]

= E[(At − µA)] · E[Xt(µAXt + Ut)] = 0,

since At is independent of Xt and Ut. We can rewrite
the expectation from (8) as:

E[X2
t+1] = E[(At − µA)2X2

t ] + E[(µAXt + Ut)
2] + σ2W

= σ2AE[X2
t ] + µ2AE[(Xt + Ut)

2] + σ2W , (9)

where, without loss of generality, we can scale the
control Ut by 1

µA
in (9).

The expression (9) makes it evident that the con-
troller only needs to focus on minimizing the term
E[(Xt + Ut)

2]; a scaling penalty of σ2A from the first
term is inevitable.



B. The minimum cost

Next we show that (5) is true. From (9), we have that
for every t and for any control strategy {Ut}t≥0,

E[X2
t+1] = σ2AE[X2

t ] + µ2AE[(Xt + Ut)
2] + E[W 2

t ]

≥ σ2AE[X2
t ] + σ2W .

Since σ2A < 1, recursion gives:

E[X2
t+1] ≥ σ2tAE[X2

0 ] +
1− σ2tA
1− σ2A

σ2W .

Taking the limit t→∞ gives (5).

5. CONVERSE PROOFS

We first tackle the converse for mean-square stability
and then discuss mean-square stability with cost D.

A. Mean-square stability converse

The mean-square stability converse bound comes from
identifying the information bottleneck that limits the
controller. When σ2A is large, we provide the controller
with the system state for free to obtain a bound. How-
ever, when σ2A is small, the primary control challenge
comes from the uncertainty in the state itself, and we
provide the random gain At−1 as side information to the
controller. These two bounds give the converse and we
prove each term separately, starting with the former.

Before we prove the theorems in this section, we
introduce some notation and previous results.

Definition 5.1. For a random variable X , the mean-
square distortion-rate function (or simply distortion) with
rate R is defined as

DR(X) := inf
Z:I(X;Z)≤R

E[(X + Z)2],

where I(X;Z) denotes the mutual information between
X and Z. Similarly, the conditional distortion of X given
Y is defined as

DR(X | Y ) := inf
Z:I(X;Z|Y )≤R

E[(X + Z)2].

Since I(Xt;Yt | Y t−1
0 ) ≤ H(Yt | Y t−1

0 ), we have
I(Xt;Yt | Y t−1

0 ) ≤ R, given our assumptions on the rate.
Hence the definitions of distortion capture the second-
moment error that is necessarily made when describing
a random variable under the communication constraints.

Shannon’s lower bound [6] states that for a continuous
random variable X ,

DR(X) ≥ N(X) · 2−2R. (10)

For a Gaussian X the inequality (10) holds with equality.

The entropy-power inequality [25] states that for in-
dependent random variables X and Y ,

N(X + Y ) ≥ N(X) +N(Y ). (11)

Theorem 5.1. Assume PA has a density pA and that
σ2A < 1. If the system (1) is mean-square stabilizable
using a causal encoder-controller pair with rate-limit R,
then

R ≥ 1

2
log

µ2AN(A)

1− σ2A
.

Proof. Let R < 1
2 log

µ2
AN(A)
1−σ2

A
. Choose β > 0 such that

1+β ≤ σ2A+
N(A)µ2

A2−2R

1+β . Such a β exists because of the
assumption on R. We show by induction that E[X2

t ] >
c ·(1+β)t for all t ≥ 0, for some positive constant c. For
the base case t = 0, this inequality holds by choosing c
small enough.

We will show that any control satisfies

E[X2
t+1] ≥ σ2AE[X2

t ] +N(A)µ2A2
−2RE[X2

t−1]

+N(W )µ2A2
−2R + σ2W .

(12)

Once we have (12), we can apply the induction hypo-
thesis, i.e., E[X2

t ] > c (1 + β)t, to get:

E[X2
t+1] ≥σ2Ac (1 + β)t +N(A)µ2A2

−2Rc (1 + β)t−1

≥c (1 + β)t+1,

where the second inequality follows from the definition
of β. The statement then follows by taking the lim inf
as t→∞.

Now consider the following mutual information,
which we can bound by R.

I(Xt;Yt | Y t−1
0 ) ≤ H(Yt | Y t−1

0 ) ≤ R.

To show (12), based on (9), we focus on the term

inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[(Xt + Ut)
2], (13)

where the infimum is over all Ut that are functions of Y t
0 .

We lower bound this by considering the distortion when
the controller is provided with extra information about
the precise value of Xt−1. By providing Xt−1 as side-
information, we effectively allow the encoder to focus



on communicating uncertainty about At−1.

inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[(Xt + Ut)
2]

= inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[E[(Xt + Ut)
2 | Xt−1]]

≥ E[ inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[(Xt + Ut)
2 | Xt−1]].

Moving the infimum inside only decreases the value of
the expectation. The inner expectation is over At−1 and
Wt−1 and the outer expectation is over Xt−1. Expanding
the terms inside, the quantity within the outer expectation
equals

inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[(At−1Xt−1+Ut−1+Wt−1+Ut)
2 | Xt−1]

Since Ut = f(Y t
0 ) and Ut−1 is a function of Y t−1

0 , we
can remove Ut−1 from the infimization to get that (13)
is lower-bounded by

E[ inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[(At−1Xt−1 +Wt−1 + Ut)
2 | Xt−1]].

Now, similar to [23], we apply Shannon’s lower bound
from (10) to get:

E[ inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[(At−1Xt−1+Wt−1+Ut)
2 | Xt−1]]

≥ E[N(At−1Xt−1 +Wt−1|Xt−1) · 2−2R].
We can now apply the entropy-power inequality (11)
(since Wt−1 is independent of everything else) to get:

E[N(At−1Xt−1 +Wt−1|Xt−1) · 2−2R]
≥ E[N(At−1Xt−1|Xt−1)]2

−2R +N(Wt−1)2
−2R

Using N(AX | X) = X2N(A) gives:

inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[(Xt + Ut)
2]

≥
{
N(A)E[X2

t−1] +N(W )
}
· 2−2R.

(14)

Plugging (14) into (9) gives us (12).

Theorem 5.2. Assume that PW has a density pW and
σ2A < 1. If (1) is mean-square stabilizable using a causal
encoder-controller pair with rate-limit R, then

R ≥ 1

2
log
(
µ2A + σ2A

)
.

The proof uses the distortion-rate function through
Lemma 5.3, which bounds the ability of the controller
to reduce the second moment. This lemma generalizes a
corresponding result of [23].

Lemma 5.3. For every t ≥ 1 and R,S ≥ 0 we have

inf
Ut−1=f(Y

t−1
0 ):

I(Xt−1;Yt−1|Y t−2
0 )≤R

DS(Xt | Y t−1
0 )

≥
(
µ2A + σ2A

)
DR+S(Xt−1 | Y t−2

0 ). (15)

The proof of this lemma is deferred to the Ap-
pendix A.

Proof of Thm. 5.2. We follow a dynamic programming
strategy and first consider optimization over the last time
step. Consider

inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[X2
t+1] = σ2AE[X2

t ]

+ µ2A inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

{
E[(Xt + Ut)

2]
}
+ σ2W ,

where we use (9) to expand the terms. Since Ut is a
function of Y t

0 , the middle term above is equal to the
distortion function of Xt at rate R given Y t−1

0 , i.e.,

inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[(Xt + Ut)
2] = DR(Xt | Y t−1

0 ).

Thus we have that

inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[X2
t+1] ≥ µ2ADR(Xt | Y t−1

0 ). (16)

Now consider the next step in the dynamic program
and consider the infimum over Ut−1. Lemma 5.3 (with
S = R) implies that

inf
Ut−1=f(Y

t−1
0 ):

I(Xt−1;Yt−1|Y t−2
0 )≤R

DR(Xt | Y t−1
0 )

≥ (µ2A + σ2A)D2R(Xt−1 | Y t−2
0 ). (17)

Combining (17) and (16) we get that

inf
Ut−1=f(Y

t−1
0 ):

I(Xt−1;Yt−1|Y t−2
0 )≤R

inf
Ut=f(Y t

0 ):
I(Xt;Yt|Y t−1

0 )≤R

E[X2
t+1]

≥ µ2A(µ2A + σ2A)D2R(Xt−1 | Y t−2
0 ). (18)

Subsequent applications of Lemma 5.3 give that

inf
U t

0

E[X2
t+1] ≥ µ2A(µ2A + σ2A)

tD(t+1)R(X0), (19)



where the infimum is over all causal rate-limited control
strategies U t0. By Shannon’s Lower Bound from (10),

D(t+1)R(X0) ≥ N(X0) · 2−2(t+1)R,

and since (µ2A + σ2A) · 2−2R > 1 by assumption, we get
from (19) that lim inft→∞ E[X2

t ] =∞.

Thm. 5.1 and Thm. 5.2 together imply Thm. 3.1.

B. Mean-square stability with cost D converse

Proof of Thm. 3.3. We build on the proofs of Thm. 5.1
and Thm. 5.2, which provide the first two terms in the
max of (6). However, since now we aim to have a specific
finite bound on the second moment of the state, we need
to incorporate the incremental impact of the additive
noise at each time step. This leads to the final term in
the bound, which depends on both the desired cost D
and the variance of the additive noise σ2W .

Recall the recursion (12) for the second moment of
the state. We can solve this recursion (see Appendix B)
to obtain that

lim inf
t→∞

E[X2
t ] ≥ N(W )µ2A2

−2R + σ2W
1− σ2A −N(A)µ2A2

−2R . (20)

From the assumption on R we know that the right hand
side of (20) is at least D, which completes the proof.

6. ACHIEVABILITY PROOF

In this section we analyze the uniform quantization
scheme to obtain Theorems 3.2 and 3.4. Thm. 3.2 follows
directly from the bound in Thm. 3.4, since as D →∞,
MD converges to

e×
(
1 +

3
√

1−σ2
A

µA

)
×
(
1 + log

(
3 + µA√

1−σ2
A

))
,

and furthermore µ2A + σ2A ≥ 1, so the expression in the
first bracket above is at most 4.

Proof of Thm. 3.4. The encoder-controller strategy uses
a uniform quantization scheme with bins of size 2δ,
where δ is given by:

δ2 =
D(1− σ2A)− σ2W

µ2A
. (21)

As illustrated in Fig. 4, the quantization bins are
[(2k − 1)δ, (2k + 1)δ), k ∈ Z, and the quantization
points are the midpoints of the bins, i.e., {2kδ, k ∈ Z}.
Let X̂t denote the midpoint of the bin that Xt lands in,
which can be obtained from Xt as follows:

X̂t = sgn(Xt)

⌊ |Xt|+ δ

2δ

⌋
· 2δ, (22)

0 ����3� 3�

2�

Yt = ;
Yt = 1Yt = 0 Yt = 10Yt = 01

5��5�

Fig. 4. Uniform quantization scheme with bins of length 2δ.

since if Xt ∈ [(2k−1)δ, (2k+1)δ), then |k| =
⌊ |Xt|+δ

2δ

⌋
.

Since the bins have length 2δ, we have that |X̂t−Xt| ≤
δ. The encoder transmits Yt, a variable length binary
encoding of X̂t, to the controller: Yt = ∅ if X̂t = 0,
Yt = 0 if X̂t = 2δ, Yt = 1 if X̂t = −2δ, Yt = 00 if
X̂t = 4δ, and so on.

Based on the received binary string Yt, the controller
applies the control Ut = −µAX̂t. Using (9) (note the
scaling in Ut) we can write the evolution of the second
moment of the state as follows:

E[X2
t ] = σ2AE[X2

t−1] + µ2AE[(Xt−1 − X̂t−1)
2] + σ2W .

Since |X̂t − Xt| ≤ δ for every t, we can recursively
bound the second moment:

E[X2
t ] ≤ σ2AE[X2

t−1] + µ2Aδ
2 + σ2W

≤ σ2A
[
σ2AE[X2

t−2] + µ2Aδ
2 + σ2W

]
+ µ2Aδ

2 + σ2W

≤ σ2tAσ2X0
+

1− σ2tA
1− σ2A

(µ2Aδ
2 + σ2W ). (23)

Since σ2A < 1 we thus have that

lim sup
t→∞

E[X2
t ] ≤

µ2Aδ
2 + σ2W

1− σ2A
= D,

where the last equality follows from the definition of δ
in (21). Thus this encoder-controller scheme stabilizes
the system with cost at most D.

What remains is to bound from above the output
entropy of the quantizer at each step by the expression
on the right hand side of (7). Our starting point is the
following bound:

H(Yt | Y t−1
0 ) ≤ H (Yt)

≤ E[`(Yt)] + logE[`(Yt) + 1] + log e, (24)

where the second inequality is due to [26]. Thus it
remains to bound the expected length of the encoding,
E[`(Yt)].

We observe that

`(Yt) =

⌈
log

(
1 +

⌊ |Xt|+ δ

2δ

⌋)⌉
.



By removing the floor and the ceiling and adding 1 we
do not decrease this quantity, so

` (Yt) ≤ log

(
1 +
|Xt|+ δ

2δ

)
+ 1

= log (3δ + |Xt|)− log δ.

By Jensen’s inequality we can bound the expectation of
the first term in the line above:

E [log (3δ + |Xt|)] ≤ log (3δ + E |Xt|)

≤ log

(
3δ +

√
E
[
X2
t

])
.

From (23) we have that E
[
X2
t

]
≤ D + σ2X0

for every
t, and so, together with the previous two displays, we
obtain that

E[`(Yt)] ≤ log
(
3δ +

√
D + σ2X0

)
− log (δ) . (25)

Putting together the bounds (24) and (25) and using the
definition of δ from (21) we obtain that

H(Yt | Y t−1
0 ) ≤ 1

2
log

µ2A
1− σ2A

+ logMD.

7. DISCUSSION

Our main contribution is to provide a unified per-
spective on communication constraints and parameter
uncertainty in control systems. While we determine the
critical rate up to first order, the additive gap between
the achievability and the converse grows unboundedly as
σ2A goes to 1. Closing this gap remains a challenge.

A more challenging question is to discuss stability
limits for higher and lower moments of the state in the
scalar setting. It is of particular interest to understand the
behavior of the logarithm of the state, which captures
the typical behavior of the system. The second moment
analysis here relies on orthogonality properties of the un-
derlying random variables, and understanding the typical
behavior might need a different approach.
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APPENDIX A
PROOF OF LEMMA 5.3

Lemma 5.3. For every t ≥ 1 and R,S ≥ 0 we have

inf
Ut−1=f(Y

t−1
0 ):

I(Xt−1;Yt−1|Y t−2
0 )≤R

DS(Xt | Y t−1
0 )

≥
(
µ2A + σ2A

)
DR+S(Xt−1 | Y t−2

0 ). (15)

Proof. By definition we have

inf
Ut−1=f(Y

t−1
0 ):

I(Xt−1;Yt−1|Y t−2
0 )≤R

DS(Xt | Y t−1
0 )

= inf
Ut−1=f(Y

t−1
0 ):

I(Xt−1;Yt−1|Y t−2
0 )≤R

inf
Z:I(Xt;Z|Y t−1

0 )≤S
E[(Xt + Z)2]

(26)
We can substitute an expansion of Xt and take con-

ditional expectation over At−1 and Wt−1 to write:

E[(Xt + Z)2]

= E[E[(At−1Xt−1 + Ut−1 +Wt−1 + Z)2 | At−1,Wt−1]]

= E
[
A2
t−1E

[(
Xt−1 +

Ut−1+Wt−1+Z
At−1

)2 | At−1,Wt−1
]]

Pulling the infimum inside the expectation can only
decrease the quantity of interest, since Ut−1 and Z
can then depend on the values of At−1 and Wt−1.
Hence, (26) is bounded from below by

E
[
A2
t−1 × inf

Ut−1=f(Y
t−1
0 ):

I(Xt−1;Yt−1|Y t−2
0 )≤R

inf
Z:I(Xt;Z|Y t−1

0 )≤S

E
[(
Xt−1 +

Ut−1+Wt−1+Z
At−1

)2 | At−1,Wt−1
]]
. (27)

We can lower bound (27) by taking a joint infimum over
Ut−1 and Z, where now only the sum of the mutual
informations above are bounded by R + S. Now, the
following is true about the mutual informations in the
infima:

I(Xt−1;Yt−1 | Y t−2
0 ) + I(Xt;Z | Y t−1

0 )

= I(Xt−1;Yt−1, Z | Y t−2
0 ).

Thus we can bound (27) from below by

E
[
A2
t−1 × inf

Ut−1=f(Y
t−1
0 ),Z:

I(Xt−1;Yt−1,Z|Y t−2
0 )≤R+S

E
[(
Xt−1 +

Ut−1+Wt−1+Z
At−1

)2 | At−1,Wt−1
]]
. (28)

Since we can treat At−1 and Wt−1 as constants inside the
expectation, the infimum inside the expectation is equal
to DR+S(Xt−1 | Y t−2

0 ). Finally, taking expectation over
At−1 gives the factor of (µ2A+σ2A) and the statement of
the lemma.

APPENDIX B
RECURSIONS

Lemma B.1. Assume that the nonnegative sequence
{zt}∞t=0 satisfies

zt+1 ≥ Kzt + Lzt−1 +M (29)

for every t ≥ 1, where K, L, and M are all nonnegative,
and K + L < 1. Then

lim inf
t→∞

zt ≥
M

1−K − L. (30)

Proof. Define the nonnegative sequence {vt}∞t=0 recur-
sively by setting v0 := z0, v1 := z1, and for every t ≥ 1
let

vt+1 = Kvt + Lvt−1 +M. (31)

Since all the terms are nonnegative, we have that zt ≥ vt
for every t ≥ 0. Solving the recurrence (31) (for instance
using generating functions) we obtain that

vt =
M

1−K − L+c1

(
K−
√
K2+4L
2

)t
+c2

(
K+
√
K2+4L
2

)t
,

for appropriate constants c1 and c2. Since K + L < 1,
we obtain that limt→∞ vt = M

1−K−L , and hence (30)
follows.

In the proof of Thm 3.3 in Sec. 5-B we apply
Lemma B.1 with K = σ2A, L = N(A)µ2A2

−2R, and
M = N(W )µ2A2

−2R + σ2W .


