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A probabilistic view of latent space graphs and
phase transitions
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We study random graphs with latent geometric structure, where the probability of each edge depends on the un-
derlying random positions corresponding to the two endpoints. We consider the setting where this conditional
probability is a general monotone increasing function of the inner product of two vectors; such a function can nat-
urally be viewed as the cumulative distribution function of some independent random variable. A one-parameter
family of random graphs, characterized by the variance of this random variable, that smoothly interpolates between
a random dot product graph and an Erdős–Rényi random graph, is investigated. Focusing on the dense regime, we
prove phase transitions of detecting geometry in these graphs, in terms of the dimension of the underlying geomet-
ric space and the variance parameter: When the dimension is high or the variance is large, the graph is similar to
an Erdős–Rényi graph with the same edge density; in other parameter regimes, there is a computationally efficient
signed triangle statistic that can distinguish them. The proofs make use of information-theoretic inequalities and
concentration of measure phenomena.
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1. Introduction

Random graphs constructed with some latent geometric space are widely used to model a large variety
of real-life networks. Random dot product graphs are a natural family of random graphs with simple
latent geometry where the probability of connection depends on the inner product of two vectors in
a Euclidean space [1,30]. For a graph on a set of vertices V = [n] � {1,2, . . . ,n}, we write i ∼ j if
and only if vertices i and j are connected by an undirected edge. Let x1, . . . , xn ∈ Rd be independent
identically distributed random vectors. In the general setting of random dot product graphs, conditioned
on the latent vectors xi and x j , the event i ∼ j happens with probability σ(〈xi, x j〉), independently
of everything else, where 〈·, ·〉 denotes the inner product and σ : R→ [0,1] is usually a monotone
increasing function called the connection function. That is,

P(i ∼ j | x1, . . . , xn) = σ(〈xi, x j〉).

The distribution of the random graph is then specified by

P(G) = E
[∏
i< j

σ(〈xi, x j〉)ai , j (1 − σ(〈xi, x j〉))1−ai , j
]
,

where A = [ai, j] is the adjacency matrix of the graph G.
The properties of the connection function σ play a key role in the presence of geometry in the

random graph. When σ is a threshold function, i.e., σ(x) = 1{x ≥ t}, then such a graph is known
simply as a (hard) random dot product graph [16]. At the other extreme, if σ is a constant, we have an
Erdős–Rényi random graph, with geometry lost. In between, intuitively, when the connection function
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is “steep”, the edges are correlated through the latent geometric space; when the connection function
is “flat”, the edges become less dependent of each other. The flatness of the connection function can
also be understood as the level of noise: A connection function that is close to a constant implies large
noise in a geometric graph. The trade-off between noise and dimensionality in detecting geometry
in random graphs was first studied by the authors [16], where a particular one-parameter family of
connection functions, consisting of step functions, were considered. An immediate question is how
does this trade-off generalize to other connection functions (in particular, smooth ones) that are widely
used in practice? We attempt to answer this question by studying a natural one-parameter family of
smooth connection functions that interpolates between the two extremes.

1.1. A probabilistic view of the connection function

We focus on the case when the latent positions are independent standard normal random vectors: xi ∼
N(0, Id) for 1 ≤ i ≤ n. We consider a broad class of connection functions bearing a probabilistic view.
Observing that the connection function is usually monotone increasing between 0 and 1, it is natural
to view it as the cumulative distribution function (CDF) of some random variable. Keeping this setup
in mind, we seek a parametrization that characterizes the “flatness” of the function and interpolates
between the random geometric graph and the Erdős–Rényi model. A natural parameter is the variance
of this random variable. If the variance is large, the CDF changes slowly. On the other hand, if the
variance goes to zero, the random variable converges to a constant and the CDF becomes a threshold
function. We formulate the idea as follows.

Let D(0,1) be an arbitrary zero mean and unit variance distribution with the CDF denoted by F :
R→ [0,1]. Suppose the probability measure is absolutely continuous with respect to Lebesgue measure
and let f be the probability density function (PDF). We assume that the PDF is strictly positive:

f (x) > 0, ∀x ∈ R. (A0)

We also assume that f is continuously differentiable and the derivative f ′ is bounded:

α � sup
x
| f ′(x)| <∞. (A1)

For technical reasons, we further assume that the second order derivative f ′′ exists and for any fixed
Gaussian random variable X ,

E[| f ′′(X)|] <∞. (A2)

We then create a one-parameter family of connection functions using F. The process can be viewed
as scaling and translation of a random variable following D(0,1). The “flatness” of the connection
function is parametrized by r , which measures the deviation of the random variable from a constant.
However, since the inner product of two d-dimensional standard normal random vectors has variance
equal to d, we account for it by letting the variance be r2d. We also need to match the marginal
probability of an edge, or edge density, in the graph, which is achieved by choosing an appropriate
mean μp,d,r . Then, we can view the connection function as the CDF of the distribution D(μp,d,r ,r2d):

σ(x) := F
(

x − μp,d,r
r
√

d

)
, (1)

where μp,d,r is determined by setting the edge density in the graph to be equal to p:

P(i ∼ j) = E[σ(〈xi, x j〉)] = E
[
F
( 〈xi, x j〉 − μp,d,r

r
√

d

) ]
= p.
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We denote the random graph constructed in this way by G(n,p,d,r).
The edge generating process for G(n,p,d,r) can also be viewed as adding noise to the hard random

dot product graph. For each pair of vertices i and j, we draw an independent random variable zi, j ∼
D(μp,d,r ,r2d). Then, conditioned on the latent positions xi, x j , and the random variable zi, j , vertices
i and j are connected if and only if 〈xi, x j〉 ≥ zi, j . In other words, for a graph with adjacency matrix A,

ai, j = 1{i ∼ j} = 1{〈xi, x j〉 ≥ zi, j}.

In contrast, in the conventional definition of a hard random dot product graph, the connection between
i and j is determined by comparing the inner product with a threshold that is constant [16].

Canonical examples of the connection function, which satisfy the assumptions above, include

• logistic (here α = π2/(18
√

3)):

F(x) = 1

1 + exp(−πx/
√

3)
,

• Gaussian (here α = 1/
√

2eπ):

F(x) =Φ(x) = 1
√

2π

∫ x

−∞
exp

(
− y2

2

)
dy.

The assumptions are also satisfied broadly by many more CDFs.
For a random graph with latent geometric structure, the only visible structure is the connectivity,

while the underlying random vectors are not observed. It is natural to ask for a given graph, if geome-
try is reflected in the combinatorial structure. A canonical random graph model that does not possess
geometry is the Erdős–Rényi graph G(n,p), in which the edges are generated independently with prob-
ability p. Therefore, in this work, we focus on how G(n,p,d,r) compares to G(n,p). The detection of
geometry can then be understood through bounds on total variation distance between them which will
be defined formally in Section 2. Roughly speaking, when the total variation distance is close to 0,
there is no algorithm that can tell the difference.

1.2. Main result

Our main result is summarized as the following theorem, where TV(·, ·) stands for total variation dis-
tance as defined in Definition 2.2(a).

Theorem 1.1. Let G(n,p,d,r) be defined above with p fixed in (0,1) and r ≥ 1.

(a) Assume (A1). If

n3

r4d
→ 0,

then TV(G(n,p,d,r),G(n,p)) → 0.
(b) Additionally, assume (A0) and (A2). Suppose that d/log2 d  r6 or r/log2 r  d1/6. If

n3

r6d
→∞,

then TV(G(n,p,d,r),G(n,p)) → 1.
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Figure 1. Phase diagram for detecting geometry in G(n,p,d,r).

Theorem 1.1 can be displayed graphically by a phase diagram in the space of the dimension d and
the parameter r , as shown in Figure 1.

Remark 1.2. There is an intermediate regime that is not covered by the theorem. We believe the phase
transitions happen at a certain power of r . We conjecture that Theorem 1.1(b) gives the actual threshold.
In the proof of Theorem 1.1(a), a factor of r2 might have been lost when applying Jensen’s inequality
to the KL divergence (see Section 3).

Remark 1.3. The noisy high-dimensional random geometric graphs studied in [16] do not fall into
the family of graphs considered in this work since the connection functions there are not continuously
differentiable, which is crucial in the proofs. Nevertheless, we can draw some comparisons between
them. We see that the signed triangle statistic gives the same detection boundary in both models. This
could be understood as despite the discrepancies, the parameters are both a linear measurement of the
deviation from a constant.

Remark 1.4. The theorem is stated in the case r ≥ 1, which is the regime where there is an interplay
between r and d. When r = o(1), by the data processing inequality, the total variation distance between
G(n,p,d,r) and G(n,p) is upper bounded by the Wishart to GOE transition, which gives the condition
d  n3 for the impossibility of detecting geometry [16]. At the same time, by the calculation in [16,
Section 5], the detection power for the signed triangle statistic when r → 0 (the connection function
becomes an indicator function) is d � n3. Combining these, we have that the phase transition is at
d � n3 regardless of the rate of r .

Remark 1.5. The main result focuses on the dense regime, with p ∈ (0,1) fixed. Although the depen-
dency on p is explicit in some steps of the proofs, we do not expect it to be the precise characterization.
Instead, we focus on making the assumptions on the connection function as weak as possible. Several
important quantities cannot be made precise without further knowledge of the connection function.
Nevertheless, it would be interesting to study, for particular families of functions, how the bounds
would depend on p precisely, thus shedding light on the sparse regime. This is beyond the scope of the
current work.

1.3. Related work

The study of random graphs generated from latent positions traces back to the work of Gilbert [12] in
the early 1960s, illustrated by applications to communication networks. After several decades, a latent
space model with large flexibility was proposed in [13] and applied to social network analysis, which
popularized the modern study of latent space graphs in statistics. The inner product model was later
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generalized to a latent position graph model equipped with a continuous positive definite kernel in [26],
where feature map estimation and universally consistent vertex classification were discussed. A recent
work [18] studied a similar inner product model focusing on model fitting methods. We refer to [1] for
a survey on such topics in random dot product graphs. Another family of random graphs with latent
geometric structure is the random geometric graphs [20]. The soft variants wherein the connection
probability depends on the distance of latent positions through a function were also investigated in
[21].

The study of random geometric graphs in high dimensions originates from the pioneering work of
Devroye, György, Lugosi, and Udina [8], where they used a multivariate central limit theorem to show
that the graph becomes similar to an Erdős–Rényi graph when the dimension grows. Subsequent work
of Bubeck, Ding, Eldan, and Rácz [5] determined that the dimension threshold is d � n3 at which
the phase transition of losing geometry happens in dense random geometric graphs. In prior work, we
generalized this phase transition phenomena to a noisy setting and studied the trade-off between noise
and dimensionality for the first time [16]; this paper is the closest to the current one, see Remark 1.3
above for a discussion. An excellent recent survey [9] provides a detailed summary of progress and
discussions of open questions on these problems (see also [23]).

Lying underneath the loss of geometry in random graphs is the Wishart to GOE transition in high
dimensions, and a line of work explores this direction [5,6,15,24]. In particular, the phase transition
was shown for log-concave measures using entropy-based methods in [6]. This was further extended
to an anisotropic setting [10]. In a recent work, masked Wishart matrices were considered, and phase
transitions were proven to matching orders in various types of combinatorial masks [3].

1.4. Organization

The rest of the paper is organized as follows. In Section 2, we introduce several notations and key facts
used throughout the paper. Section 3 consists of the proof of Theorem 1.1(a), where several information-
theoretic inequalities are used. Detecting geometry using the signed triangle statistic is presented in
Section 4, where the main body consists of estimating the expectation of a signed triangle in G(n,p,d,r)
in two different parameter regimes. Applying Chebyshev’s inequality with these estimates concludes
the proof of Theorem 1.1(b).

2. Notations and preliminaries

A graph G = (V,E) is a tuple consisting of a set of vertices V = [n] � {1,2, . . . ,n} and a set of edges
E ⊂

([n]
2
)
, where the collection of all subsets of a set S with cardinality k is denoted by

(S
k

)
. We use

‖·‖ to denote the Euclidean norm of a vector. For a random variable X ∈ X and a measurable function
f : X → R, ‖ f (X)‖p denotes the Lp-norm of f ∈ Lp(X).

Our proofs build upon various inequalities involving f -divergences, which are briefed here. The
definitions and properties stated in this section can be found in most standard texts on information
theory (see, e.g., [22, Chapter 6]).

To begin with, we state the definition of an f -divergence.1

1Note that the f in f -divergence should not be confused with the probability density function f in the description of
G(n, p, d, r). In general, f is overloaded in this section, but the meaning of f will always be clear from the context.
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Definition 2.1 ( f -divergence). Let P and Q be probability measures on the measurable space (Ω,F ).
Suppose that P is absolutely continuous with respect to Q. For a convex function f such that f (1) = 0,
the f -divergence of P and Q is defined as

D f (P ‖ Q)� EQ
[

f
(

dP
dQ

) ]
=

∫
Ω

f
(

dP
dQ

)
dQ,

where dP
dQ is the Radon–Nikodym derivative of P with respect to Q.

Different choices of f lead to the following f -divergences encountered in the proofs.

Definition 2.2. Let P and Q be probability measures on the measurable space (Ω,F ) such that P is
absolutely continuous with respect to Q.

(a) Total variation distance (corresponding to f (x) = 1
2 |x − 1|):

TV(P,Q)� sup
A∈F

|P(A) − Q(A)| = 1
2

∫
Ω





dPdQ − 1




 dQ.

(b) Kullback–Leibler (KL) divergence (corresponding to f (x) = x log x):

KL(P ‖ Q)� EP
[
log

dP
dQ

]
=

∫
Ω

dP
dQ log

dP
dQ dQ.

(c) (Pearson) χ2-divergence (corresponding to f (x) = (x − 1)2):

χ2(P ‖ Q)� EQ
[ (

dP
dQ − 1

) 2]
= EQ

[ (
dP
dQ

) 2]
− 1.

The f -divergences defined above are connected through the following inequalities (see [11]).

Proposition 2.3 (Pinsker’s inequality). Let P and Q be probability measures on the measurable
space (Ω,F ) such that P is absolutely continuous with respect to Q. Then

TV(P,Q) ≤
√

1
2

KL(P ‖ Q).

Proposition 2.4. Let P and Q be probability measures on the measurable space (Ω,F ) such that P is
absolutely continuous with respect to Q. Then

KL(P ‖ Q) ≤ log(1 + χ2(P ‖ Q)).

For KL divergence, a useful property is the chain rule, stated as the following proposition.

Proposition 2.5 (Chain rule). For joint distributions PX ,Y = PX |YPY and QX ,Y = QX |YQY , the chain
rule for KL divergence reads

KL(PX ,Y ‖ QX ,Y ) =KL(PY ‖ QY ) + EPY KL(PX |Y ‖ QX |Y ).

We show the following lemma for Lebesgue integrable functions with bounded derivatives.
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Lemma 2.6. Suppose f : R→ R is an integrable function on R that is continuously differentiable. If
f ′ is bounded, then f is bounded as well. Further, let M �

∫
R
| f (x)| dx < +∞ and α � supx | f ′(x)|;

then supx | f (x)| ≤ 2
√

Mα.

Proof. For all a ∈ R and b > 0, consider the integral

∫ a+b

a
| f (x)| dx ≤

∫
R

| f (x)| dx = M .

Let fm � infx∈[a,a+b] | f (x)|. Since fm ≤ | f (x)| for x ∈ [a,a + b],

b fm =
∫ a+b

a
fm dx ≤

∫ a+b

a
| f (x)| dx ≤ M,

which gives fm ≤ M/b.
Since f is continuous, there exists a number c ∈ [a,a + b] such that | f (c)| = fm. The mean value

theorem gives that for ξ ∈ [a,a + b],

f (a) ≤ fm + | f ′(ξ)|b ≤ M
b
+ αb.

Applying the proof to − f , one could get

| f (a)| ≤ M
b
+ αb.

If α > 0, by choosing b =
√

M/α, the claim directly follows.
If α = 0, then f is constant on R. Since f is integrable, f (x) = 0 for all x ∈ R. Thus, the claim is also

true.

Applying Lemma 2.6 to a probability density function, we have the following corollary.

Corollary 2.7. Let f : R→ R+ be a probability density function that is continuously differentiable. If
supx | f ′(x)| ≤ α, then supx | f (x)| ≤ 2

√
α.

For standard normal random variables, Stein’s lemma (also known as Gaussian integration by parts)
provides a powerful tool and is frequently used in the proofs. The lemma and Stein’s method built upon
it are broadly used in probability and statistics (see, e.g., [14, Example 13.13], also [7]). We state it as
the following proposition.

Proposition 2.8 (Stein’s lemma [25, Lemma 1]). Let Y be a N(0,1) real random variable and let
g : R→ R be an indefinite integral of the Lebesgue measurable function g′, essentially the derivative
of g. Suppose also that E[|g′(Y )|] <∞. Then,

E[g′(Y )] = E[Yg(Y )].

For a continuously differentiable function of a standard normal random vector, the following propo-
sition provides a sharp bound for the variance, known as the Gaussian Poincaré inequality (see [2,
Theorem 3.20]).
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Proposition 2.9 (Gaussian Poincaré inequality). Suppose x = (x1, . . . , xd) is a vector of i.i.d. stan-
dard Gaussian random variables. Let f : Rd → R be any continuously differentiable function. Then,

Var[ f (x)] ≤ E[‖∇ f (x)‖2].

We also make frequent use of the properties of sub-exponential random variables. We state the
definition in terms of the moment generating function and the equivalent tail bound, which appear in
most texts (see, e.g., [28, Definition 2.7 and Proposition 2.9]).

Definition 2.10. A random variable X is sub-exponential if there are nonnegative parameters (a,b)
such that

logE[et(X−E[X])] ≤ a2t2

2
for all |t | < 1

b
.

Proposition 2.11. Suppose X is sub-exponential with parameters (a,b). Then,

P(X − E[X] ≥ t) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
− t2

2a2

)
if 0 ≤ t ≤ a2

b
,

exp
(
− t

2b
)

for t >
a2

b
.

Equivalently,

P(X − E[X] ≥ t) ≤ exp
(
−1

2
min

{
t2

a2 ,
t
b

})
.

The following concentration lemma regarding the normal distribution is used in various proofs.

Lemma 2.12. Let f : Rd → R be a continuously differentiable function. If the norm of the gradient
satisfies ‖∇ f (x)‖ ≤ ‖x‖, then for x ∼ N(0, Id), f (x) is sub-exponential with parameters (2

√
d,1). In

particular, the tails of f (x) satisfy

P(| f (x) − E[ f (x)]| ≥ t) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 exp
(
− t2

8d
)

if 0 ≤ t ≤ 4d,

2 exp
(
− t

2
)

for t > 4d.

Proof. Without loss of generality, we may assume E[ f (x)] = 0.
For a nonnegative random variable Z , the entropy of Z is defined as

Ent(Z)� E[ϕ(Z)] − ϕ(E[Z]),

where ϕ(x) = x log x (see, e.g., [2]; note that this notion of entropy is not to be confused with the
Shannon entropy).

By the Gaussian logarithmic Sobolev inequality (see, e.g., [2, Theorem 5.4]),

Ent(et f (x)) ≤ 2E[‖∇et f (x)/2‖2] = t2

2
E[et f (x) ‖∇ f (x)‖2] ≤ t2

2
E[‖x‖2et f (x)].

The duality formula of the entropy (see [2, Remark 4.4]) implies that for any random variable W
such that E[eW ] <∞, the entropy of etZ for a random variable Z satisfies

E[WetZ ] ≤ E[etZ ] logE[eW ] + Ent(etZ ).



Latent space graphs and phase transitions 2425

Applying the inequality with Z = f (x) and W = e−1
2e ‖x‖2, we have that

E[‖x‖2et f (x)] ≤ 2e
e − 1

E[et f (x)] logE
[
exp

(
e − 1
2e

‖x‖2
) ]
+ Ent(et f (x)).

Since x ∼N(0, Id), ‖x‖2 has a chi-squared distribution with d degrees of freedom. By the moment
generating function of the chi-squared distribution, we have that

logE
[
exp

(
e − 1
2e

‖x‖2
) ]
= log

(
1 − 2 · e − 1

2e

) −d/2

=
d
2
.

Hence, by putting together the previous displays, we have that

Ent(et f (x)) ≤ t2

2

(
ed

e − 1
E[et f (x)] + Ent(et f (x))

)
≤ t2

2

(
2d E[et f (x)] + Ent(et f (x))

)
.

By rearranging this inequality, we have that

Ent(et f (x)) ≤ dt2

1 − t2/2
E[et f (x)] ≤ 2dt2

E[et f (x)],

where the second inequality holds for |t | ≤ 1. Write M(t) � E[et f (x)], and note that Ent(et f (x)) =
tM ′(t) − M(t) log M(t). Therefore, the inequality in the previous display becomes

tM ′(t) − M(t) log M(t) ≤ 2dt2M(t).

Solving this equation exactly, and noting that M(0) = 1, gives that

logE[et f (x)] ≤ 2dt2.

By Definition 2.10, the claim is hence proved.
Further by Proposition 2.11, the tail bound directly follows.

Remark 2.13. This lemma can also be derived from an exponential Poincaré inequality [27, prob-
lem 3.16], as pointed out by Ramon van Handel (personal communication).

The following proposition characterizes the tail behavior of the inner product of two independent
d-dimensional standard normal random vectors. The sub-exponential tails in the proposition can be
derived from Lemma 2.12; however, since the function is explicit, we prove it directly using the moment
generating function, resulting in slightly different constants.

Proposition 2.14. For x, y ∈ Rd independently distributed as N(0, Id), the inner product 〈x, y〉 is
sub-exponential with parameters (

√
2d,

√
2).

Proof. Consider two independent random variables X,Y ∼ N(0,1). The moment generating function
of their product satisfies

E[etXY ] =
∬

1
2π

etxye−(x
2+y2)/2 dx dy =





 1 −t
−t 1






−1/2

=
1

√
1 − t2

.
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Since (1 − x)−1/2 ≤ ex for 0 ≤ x ≤ 1/2, we have for t2 ≤ 1/2 that E[etXY ] ≤ et
2
.

Consequently, for two independent standard normal random vectors x, y ∼N(0, Id), we have that

E[et 〈x,y 〉] = E[et
∑d

i=1 xiyi ] =
d∏
i=1

E[etxiyi ] ≤ edt
2

for t2 ≤ 1/2.

We state a lemma concerning the concentration of the inner product of two independent random
vectors uniformly distributed on the unit sphere Sd−1.

Lemma 2.15. For x, y ∈ Rd independently uniformly distributed on the unit sphere Sd−1, when t ≥ 1
and d ≥ 2,

P

(
|〈x, y〉| ≥ t

√
d

)
≤ 2 exp

(
− t2

4

)
.

Proof. By rotation invariance on the d-dimensional sphere, we can fix y = e1 � (1,0, . . . ,0), the first
vector of the standard basis. Let z ∈ N(0, Id), then z/‖ z‖ is a uniform random point in Sd−1. Therefore,
we have that

P

(
|〈x, y〉| ≥ t

√
d

)
= P

(
|z1 |
‖ z‖ ≥ t

√
d

)
= P

( z2
1∑d

i=1 z2
i

≥ t2

d

)
.

Since zi’s are i.i.d. standard normal random variables, z2
1/
∑d

i=1 z2
i has a Beta( 1

2 ,
d−1

2 ) distribution.
Hence, by the density function of a beta distribution, we have that

P

( z2
1∑d

i=1 z2
i

≥ t2

d

)
=

Γ( d2 )
Γ( 1

2 )Γ(
d−1

2 )

∫ 1

t2
d

z−1/2(1 − z)(d−1)/2−1 dz.

By Wendel’s double inequality (see [29, equation (7)], also [16, equation (3.15)]), we have that

Γ( d2 )
Γ( 1

2 )Γ(
d−1

2 )
≤
√

d − 1
2π
.

Additionally,

∫ 1

t2
d

z−1/2(1 − z)(d−1)/2−1 dz ≤
√

d
t

∫ 1

t2
d

(1 − z)(d−1)/2−1 dz =

√
d

t

(
− 2

d − 1
(1 − z)(d−1)/2

) 




1

t2
d

=
2
√

d
t(d − 1)

(
1 − t2

d

) (d−1)/2

≤ 2
√

d
t(d − 1) exp

(
−(d − 1)t2

2d

)
.

Putting the previous displays together, we have for t ≥ 1 and d ≥ 2 that

P

(
|〈x, y〉| ≥ t

√
d

)
≤ 2
√
π

exp
(
− t2

4

)
.

The claim directly follows.
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Remark 2.16. The proof of Lemma 2.15 makes use of the explicit density function of a Beta dis-
tribution. The tails of Beta random variables have also been studied in recent years [19,31], where
sub-Gaussian and Bernstein-type bounds are given respectively in different parameter regimes.

Remark 2.17. We have seen in Proposition 2.14 that the inner product of two d-dimensional standard
normal random vectors has sub-exponential tails, and since the moment generating function does not
exist when t > 1, the exponential rate cannot be improved. In comparison, Lemma 2.15 gives sub-
Gaussian tails when the random vectors are uniformly distributed on a sphere of the same dimension,
which decays much faster. In other words, the inner product of independent high dimensional random
vectors concentrates better on a sphere than in a Gaussian space after proper normalization.

3. Impossibility of detecting geometry
In this section, we show that G(n,p,d,r) and G(n,p) are indistinguishable when the dimension d or the
parameter r is large, thus proving Theorem 1.1(a).

We first introduce several notations used in the proofs. We denote the adjacency matrix of G(n,p,d,r)
by A. Let B ∈ Rn×n be a symmetric Bernoulli ensemble, that is, {bi, j }1≤i< j≤n are independent
Bernoulli random variables with parameter p. We also use the following shorthand notations in this
section. For the matrices A,B ∈ Rn×n, we denote their principal minor of order k by Ak and Bk . The
bold lower case letter ak denotes the last row of Ak . The k by d matrix consisting of the first k rows of
the matrix X ∈ Rn×d is denoted by Xk , and xk denotes the kth row of X .

Pinsker’s inequality (Proposition 2.3) gives

TV(G(n,p,d,r),G(n,p)) ≤
√

1
2

KL(G(n,p,d,r) ‖ G(n,p)).

By the chain rule of KL divergence (Proposition 2.5) we have that

KL(G(n,p,d,r) ‖ G(n,p)) =KL(A ‖ B) =
n−1∑
k=0

EAk
KL(ak+1 | Ak ‖ bk+1 | Bk = Ak)

=

n−1∑
k=0

EAk
KL(ak+1 | Ak ‖ bk+1),

(2)

where the last equality is due to the independence of bk+1 and Bk . By convexity of KL divergence (see,
e.g., [16, Proposition 3.4]), applying Jensen’s inequality gives that

EAk
KL(ak+1 | Ak ‖ bk+1) ≤ EAk ,Xk

KL(ak+1 | Ak,Xk ‖ bk+1)

= EXk
KL(ak+1 | Xk ‖ bk+1),

where the last equality is because ak+1 and Ak are conditionally independent given Xk . The KL diver-
gence is bounded from above by the χ2 divergence (see Proposition 2.4):

EXk
KL(ak+1 | Xk ‖ bk+1) ≤ EXk

[log(1 + χ2(ak+1 | Xk ‖ bk+1))]

≤ log(1 + EXk
χ2(ak+1 | Xk ‖ bk+1))

= logEXk ,bk+1

[ (
PG(n,p,d,r)(bk+1 | Xk)
PG(n,p)(bk+1)

) 2]
,

(3)
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where the second line is by Jensen’s inequality.
By the definition of G(n,p,d,r), we have that

PG(n,p,d,r)(bk+1 | Xk) = Exk+1

[ ∏
1≤i≤k

σ(〈xi, xk+1〉)bi ,k+1(1 − σ(〈xi, xk+1〉))1−bi ,k+1

]
.

Following an idea similar to the second moment method [4], we can write the square as the product of
two expectations of independent copies and then apply Fubini’s theorem:

PG(n,p,d,r)(bk+1 | Xk)2 = Exk+1

[ ∏
1≤i≤k

σ(〈xi, xk+1〉)bi ,k+1(1 − σ(〈xi, xk+1〉))1−bi ,k+1

]

× Ex′
k+1

[ ∏
1≤i≤k

σ(〈xi, x ′k+1〉)
bi ,k+1(1 − σ(〈xi, x ′k+1〉))

1−bi ,k+1

]

= Exk+1 ,x
′
k+1

[ ∏
1≤i≤k

(
σ(〈xi, xk+1〉)σ(〈xi, x ′k+1〉)

) bi ,k+1

×
(
(1 − σ(〈xi, xk+1〉))(1 − σ(〈xi, x ′k+1〉))

) 1−bi ,k+1
]
,

where the last equality is by the independence of xk+1 and x ′
k+1. Therefore, by interchanging the

expectations and taking out the product by independence, we obtain that

EXk ,bk+1

[ (
PG(n,p,d,r)(bk+1 | Xk)
PG(n,p)(bk+1)

) 2]

= Exk+1 ,x
′
k+1

[ ∏
1≤i≤k

Exi ,bi ,k+1

[ (
1
p2σ(〈xi, xk+1〉)σ(〈xi, x ′k+1〉)

) bi ,k+1

×
(

1
(1 − p)2

(1 − σ(〈xi, xk+1〉))(1 − σ(〈xi, x ′k+1〉))
) 1−bi ,k+1

] ]
.

Since each entry of B is an independent Bernoulli random variable with parameter p, we can compute
the inner expectation over bi,k+1 directly, obtaining that

EXk ,bk+1

[ (
PG(n,p,d,r)(bk+1 | Xk)
PG(n,p)(bk+1)

) 2]

= Exk+1 ,x
′
k+1

[ ∏
1≤i≤k

(
1 +

1
p(1 − p) Exi [(σ(〈xi, xk+1〉) − p)(σ(〈xi, x ′k+1〉) − p)]

) ]

= Exk+1 ,x
′
k+1

[ (
1 +

1
p(1 − p) Ex1 [(σ(〈x1, xk+1〉) − p)(σ(〈x1, x

′
k+1〉) − p)]

) k ]
,

(4)

where the last equality holds since all xi’s are identically distributed.
Define

γ(x, y)� Ez∼N(0,Id )[(σ(〈x, z〉) − p)(σ(〈y, z〉) − p)]. (5)

We show the following lemma concerning γ(x, y).
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Lemma 3.1. Let x, y ∈ Rd be independent standard normal random vectors. Recall the definition of σ,
as well as the assumption (A1).

(a) The mean of γ(x, y) satisfies

0 ≤ E[γ(x, y)] ≤ α
2

r4d
.

(b) The variance of γ(x, y) is upper bounded by

Var[γ(x, y)] ≤ 68α2

r4d
.

(c) Let L �
√

34α/(r2d). Then, γ(x, y)/L is sub-exponential with parameters (2
√

2d,1), that is,

logE
[
exp

(
t
L
(γ(x, y) − E[γ(x, y)])

) ]
≤ 4dt2 for all |t | ≤ 1.

Proof of Lemma 3.1(a). Let

η(x)� Ez∼N(0,Id )[σ(〈x, z〉)] and ξ(x, y)� Ez∼N(0,Id )[σ(〈x, z〉)σ(〈y, z〉)].

By the construction of σ, we have that

Ex∼N(0,Id )[η(x)] = E[σ(〈x, z〉)] = p. (6)

Next, we bound the variance of η(x). Observe that

∂η(x)
∂xi

= Ez∼N(0,Id )

[
∂σ(〈x, z〉)
∂xi

]
= Ez∼N(0,Id )[ziσ

′(〈x, z〉)].

Thus, by Stein’s lemma we have that

∂η(x)
∂xi

= Ez−i [Ezi [ziσ′(〈x, z〉)]] = Ez−i
[
Ezi

[
∂σ′(〈x, z〉)
∂zi

] ]
= xi Ez[σ′′(〈x, z〉)],

where z−i denotes the rest of z except for zi . Hence, by the definition of σ in (1),

‖∇η(x)‖2 =

d∑
i=1

(
∂η(x)
∂xi

) 2

=
1

r4d2

d∑
i=1

x2
i Ez

[
f ′
( 〈x, z〉 − μp,d,r

r
√

d

) ] 2

=
‖x‖2

r4d2 Ez

[
f ′
( 〈x, z〉 − μp,d,r

r
√

d

) ] 2

≤ ‖x‖2

r4d2 Ez

[
f ′
( 〈x, z〉 − μp,d,r

r
√

d

) 2]
≤ α

2‖x‖2

r4d2 ,

where we used the assumption (A1) in the last inequality. The Gaussian Poincaré inequality (Proposi-
tion 2.9) thus gives

Var[η(x)] ≤ E[‖∇η(x)‖2] ≤ α2

r4d2 E[‖x‖
2] = α

2

r4d
. (7)

Additionally, by interchanging the order of expectations we have that

E[ξ(x, y)] = E[Ez[σ(〈x, z〉)σ(〈y, z〉)]] = E[Ex[σ(〈x, z〉)]Ey[σ(〈y, z〉)]] = E[η(z)2]. (8)
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Finally, expanding the product in the definition of γ(x, y) and putting together the expressions
in (6), (7), and (8), we obtain that

E[γ(x, y)] = E[ξ(x, y)] − pE[η(x)] − pE[η(y)] + p2 = E[ξ(x, y)] − p2 =Var[η(z)] ≤ α
2

r4d
. (9)

The nonnegativity of E[γ(x, y)] directly follows from it being a variance.

Recall the assumption (A1), and note that Corollary 2.7 thus implies that f is bounded and

sup
x
| f (x)| ≤ 2

√
α. (10)

Proof of Lemma 3.1(b) and Lemma 3.1(c). Taking the partial derivative with respect to xi , we have
that

∂γ(x, y)
∂xi

= Ez∼N(0,Id )

[
∂(σ(〈x, z〉) − p)

∂xi
(σ(〈y, z〉) − p)

]

= Ez∼N(0,Id )[ziσ
′(〈x, z〉)(σ(〈y, z〉) − p)].

By Stein’s lemma, we have that

∂γ(x, y)
∂xi

= Ez−i [Ezi [ziσ′(〈x, z〉)(σ(〈y, z〉) − p)]] = Ez−i
[
Ezi

[
∂

∂zi
(σ′(〈x, z〉)(σ(〈y, z〉) − p))

] ]

= yi Ez[σ′(〈x, z〉)σ′(〈y, z〉)] + xi Ez[σ′′(〈x, z〉)(σ(〈y, z〉) − p)].

Then, by the elementary inequality (a + b)2 ≤ 2(a2 + b2) and Jensen’s inequality, we have that(
∂γ(x, y)
∂xi

) 2

≤
2y2

i

r4d2
Ez

[
f
( 〈x, z〉 − μp,d,r

r
√

d

)
f
( 〈y, z〉 − μp,d,r

r
√

d

) ] 2

+
2x2

i

r4d2 Ez

[
f ′
( 〈x, z〉 − μp,d,r

r
√

d

)
(σ(〈y, z〉) − p)

] 2

≤
2y2

i

r4d2 Ez

[
f
( 〈x, z〉 − μp,d,r

r
√

d

) 2

f
( 〈y, z〉 − μp,d,r

r
√

d

) 2]

+
2x2

i

r4d2 Ez

[
f ′
( 〈x, z〉 − μp,d,r

r
√

d

) 2

(σ(〈y, z〉) − p)2
]

≤
2α2(x2

i + 16y2
i )

r4d2 ,

where in the last inequality we used (A1) and (10). Hence, we obtain that

‖∇γ(x, y)‖2 =

d∑
i=1

(
∂γ(x, y)
∂xi

) 2

+

d∑
i=1

(
∂γ(x, y)
∂yi

) 2

≤ 34α2

r4d2 (‖x‖
2 + ‖y‖2). (11)

Taking expectation on both sides of the above display yields

E[‖∇γ(x, y)‖2] ≤ 34α2

r4d2 E[‖x‖
2 + ‖y‖2] = 68α2

r4d
.



Latent space graphs and phase transitions 2431

By the Gaussian Poincaré inequality we thus have that

Var[γ(y, z)] ≤ E[‖∇γ(y, z)‖2] ≤ 68α2

r4d
.

Lemma 3.1(b) is hence proved.
By viewing (x, y) as a (2d)-dimensional vector, (11) exactly gives the upper bound of the norm of

the gradient in terms of the norm of the vector. Thus, by applying Lemma 2.12, the sub-exponential
tails of γ(x, y) in Lemma 3.1(c) directly follow.

With Lemma 3.1 in place, we return to bounding the KL divergence from above. Using the definition
of γ(x, y), we can express (4) with γ(x, y) as

EXk ,bk+1

[ (
PG(n,p,d,r)(bk+1 | Xk)
PG(n,p)(bk+1)

) 2]
= E

[ (
1 +

1
p(1 − p)γ(x, y)

) k ]

≤ E
[
exp

(
k

p(1 − p)γ(x, y)
) ]
,

where we use the fact that 1 + x ≤ exp(x). Using Lemma 3.1(c) with t = Lk/(p(1 − p)), we have, for
r2d/k ≥

√
34α/(p(1 − p)), that

E

[
exp

(
k

p(1 − p) (γ(x, y) − E[γ(x, y)])
) ]

≤ exp
(

136α2

p2(1 − p)2
· k2

r4d

)
.

Recall that we assume that n3/(r4d) → 0, which implies that r2d/n → ∞, so the inequality in the
display above holds eventually (uniformly for all k ≤ n). Combined with Lemma 3.1(a), we thus have
that

E

[
exp

(
k

p(1 − p)γ(x, y)
) ]
= exp

(
k

p(1 − p) E[γ(x, y)]
)
E

[
exp

(
k

p(1 − p) (γ(x, y) − E[γ(x, y)])
) ]

≤ exp
(
α2

p(1 − p) ·
k

r4d
+

136α2

p2(1 − p)2
· k2

r4d

)
.

Putting the previous displays together and inserting the upper bound into (3), we obtain that

EXk
KL(ak+1 | Xk ‖ bk+1) ≤

α2

p(1 − p) ·
k

r4d
+

136α2

p2(1 − p)2
· k2

r4d
.

Plugging the above display into (2), we conclude that

KL(G(n,p,d,r) ‖ G(n,p)) =KL(A ‖ B) ≤
n−1∑
k=0

(
α2

p(1 − p) ·
k

r4d
+

136α2

p2(1 − p)2
· k2

r4d

)

≤ α2

2p(1 − p) ·
n2

r4d
+

68α2

3p2(1 − p)2
· n3

r4d
.

The asymptotic in Theorem 1.1(a) directly follows.
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4. Detecting geometry using the signed triangle statistic

In this section, we show that the geometric structure in G(n,p,d,r) can be detected in certain parameter
regimes of d and r using the signed triangle statistic proposed in [5], thus proving Theorem 1.1(b).

Let A be the adjacency matrix of a sample graph G with edge probability p. The signed triangle over
vertices {i, j, k} is defined as

τ{i, j ,k }(G)� (ai, j − p)(aj ,k − p)(ak ,i − p).

Further, the signed triangle statistic is the sum of all possible signed triangles in the graph:

τ(G)�
∑

{i, j ,k }∈
([n]

3
) τ{i, j ,k }(G).

In G(n,p), due to the independence of edges, calculation of the mean and the variance of the signed
triangle statistic is straightforward, which has been done in [5]. We state the results here as the following
lemma.

Lemma 4.1. The signed triangle statistic in G(n,p) satisfies

E[τ(G(n,p))] = 0 and Var[τ(G(n,p))] ≤ n3.

The main goal of this section is to estimate the mean and the variance of the signed triangle statis-
tic in G(n,p,d,r). The analysis of the mean is quite delicate due to the generality of the connection
function. We have two parameters d and r that affect the detectability of geometry acting in different
ways. Informally, when the variance parameter r is large, the connection function becomes “flat” and
the edges in the graph are less dependent on the latent space. When the dimension d is large, the inner
products of the latent vectors become more independent hence the edges. The challenge here is to im-
plement the intuition in the two regimes while retaining the correct dependency of the other parameter.
The estimation is divided into two parts accordingly.

4.1. Estimating the mean in the large variance regime

We start our discussion with the estimate for the mean in the regime when r is large, specifically
r/log2 r  d1/6. Before diving into the details, we first present a concentration result which provides a
tail bound for the remainder of a linear approximation of σ.

Lemma 4.2. Suppose x, y ∈ Rd are independent standard normal random vectors. Denote η �
E[σ′(〈x, y〉)] and define the remainder of a linear approximation of σ as

g(x)� σ(x) − p − ηx.

Then, the tails of g(〈x, y〉) satisfy that for t ≥ 6,

P

(
|g(〈x, y〉)| ≥ 3αt

2r2

)
≤ exp

(
−
√

t
2e

)
.
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Proof. Let x ′, y ′ ∼ N(0, Id) be independent copies of x, y. For ease of notation, denote Z � 〈x, y〉 and
Z ′ � 〈x ′, y ′〉. Then, by definition,

p = E[σ(Z ′)] and η = E[σ′(Z ′)].

Plugging them into g(x) and by the triangle inequality, we have that

|g(Z)| = |σ(Z) − E[σ(Z ′)] − E[σ′(Z ′)]Z | = |EZ′[σ(Z) − σ(Z ′) − σ′(Z ′)(Z − Z ′)] − E[σ′(Z ′)Z ′]|

≤ |EZ′[σ(Z) − σ(Z ′) − σ′(Z ′)(Z − Z ′)]|︸���������������������������������������������︷︷���������������������������������������������︸
V1

+ |E[σ′(Z ′)Z ′]|︸�����������︷︷�����������︸
V2

.

We first bound V1 and V2 from above and then utilize Gaussian hypercontractivity.
By Taylor’s theorem,

σ(Z) − σ(Z ′) − σ′(Z ′)(Z − Z ′) = σ
′′(ξ)
2

(Z − Z ′)2

for some ξ between Z ′ and Z . Then, we have that

V1 ≤ EZ′[|σ(Z) − σ(Z ′) − σ′(Z ′)(Z − Z ′)|] = EZ′

[
|σ′′(ξ)|

2
(Z − Z ′)2

]
= EZ′

[
| f ′(ξ)|
2r2d

(Z − Z ′)2
]

≤ α

2r2d
EZ′[(Z − Z ′)2],

where we used the assumption (A1) in the last inequality.
Since Z ′ = 〈x ′, y ′〉 =

∑d
i=1 x′i y

′
i , we have that E[Z ′] = 0 and E[Z ′2] = d. Therefore,

EZ′[(Z − Z ′)2] = EZ′[Z2 − 2Z Z ′ + Z ′2] = Z2 + d.

Hence, we obtain that

V1 ≤
α

2r2d
(Z2 + d) = α

2r2d
Z2 +

α

2r2 .

Turning to V2, by the triangle inequality we have that

V2 = |E[σ′(〈x, y〉)〈x, y〉]| =





d∑
i=1

E[σ′(〈x, y〉)xi yi]




 ≤

d∑
i=1

|E[σ′(〈x, y〉)xiyi]|,

Thus, by Stein’s lemma and Jensen’s inequality, we have that

V2 ≤
d∑
i=1





E
[
yi
∂σ′(〈x, y〉)
∂xi

] 



 =
d∑
i=1

|E[y2
i σ

′′(〈x, y〉)]| ≤
d∑
i=1

E[y2
i |σ

′′(〈x, y〉)|] ≤ α

r2d
E[‖y‖2] = α

r2 .

Therefore, by the triangle inequality, we have for any q ≥ 1 that

‖g(Z)‖q ≤ ‖V1‖q + ‖V2‖q ≤ α

2r2d
‖Z2‖q +

3α
2r2 .
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Since Z2 = (
∑d

i=1 xiyi)2 is a fourth order polynomial of independent standard normal random vari-
ables, by Gaussian hypercontractivity (see [2, Corollary 5.21] for the univariate case and [14, Theo-
rem 6.7] for a general argument), we have that

‖Z2‖q ≤ (q − 1)2‖Z2‖2.

Since

E[Z4] = E
[ ( d∑

i=1

xiyi

) 4]
= 3

∑
i�j

E[x2
i ]E[x

2
j ]E[y

2
i ]E[y

2
j ] +

∑
i

E[x4
i ]E[y

4
i ] = 3d2 + 6d ≤ 9d2,

we obtain that ‖Z2‖2 ≤ 3d and so

‖g(Z)‖q ≤ 3α
2r2 (q

2 − 2q + 2).

By Markov’s inequality,

P

(
|g(Z)| ≥ 3α

2r2
t
)
≤
(

3α
2r2

t
) −q
E[|g(Z)|q]

≤ t−q(q2 − 2q + 2)q = exp(−q log t + q log(q2 − 2q + 2)).

For t ≥ 3, by choosing q =
√

t/e − 1 + 1, we have that

P

(
|g(Z)| ≥ 3αt

2r2

)
≤ exp

(
−
(√

t
e
− 1 + 1

) )
.

Hence, for t ≥ 6,

P

(
|g(Z)| ≥ 3αt

2r2

)
≤ exp

(
−
√

t
2e

)
.

Let

λ � E
[

f
( 〈x, y〉 − μp,d,r

r
√

d

) ]
. (12)

Then, by the construction of σ,

E[σ′(〈x, y〉)] = λ

r
√

d
.

We also have

0 ≤ λ ≤ sup
x
| f (x)| ≤ 2

√
α.

In the following lemma, we show that λ is bounded away from 0 uniformly for all r and d.

Lemma 4.3. Let λ be defined in (12). For a fixed p ∈ (0,1), there exists a constant Cp > 0 that does not
depend on r and d such that λ ≥ Cp .
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Proof. Let

Z �
〈x, y〉 − μp,d,r

r
√

d
.

By Proposition 2.14, we have

P

(
Z − E[Z] ≥ t

r
√

d

)
≤ exp

(
−1

2
min

{
t2

2d
,

t
√

2

})
,

which gives

P(Z − E[Z] ≥ t) ≤ exp
(
−1

2
min

{
t2r2

2
,
tr
√

d
√

2

})
.

Since r ≥ 1 and d ≥ 1, we have for t ≥ 1,

P(Z − E[Z] ≥ t) ≤ exp
(
− t

4

)
. (13)

The lower tail directly follows from Z − E[Z] being symmetric about zero.
Without loss of generality, we may assume p ∈ (0,1/2]. (If p ∈ (1/2,1), we can consider the con-

nection function 1 − F(x), which shares the same properties with F(x).) Since F is strictly monotonic
when F ∈ (0,1), the inverse F−1 exists in (0,1). Let zp/2 � F−1(p/2). We first show by contradiction
that E[Z] > zp/2 − 4 log 4

p . Suppose that it does not hold, that is, E[Z] ≤ zp/2 − 4 log 4
p . Then, by the

monotonicity of F,

p = E[F(Z)] = E[F(Z)1{Z < zp/2}] + E[F(Z)1{Z ≥ zp/2}] ≤
p
2
+ P(Z ≥ zp/2)

≤ p
2
+ P

(
Z ≥ E[Z] + 4 log

4
p

)
,

where the last inequality holds since {Z ≥ zp/2} ⊂ {Z ≥ E[Z] + 4 log 4
p }. Using (13), we have that

p ≤ p
2
+

p
4
=

3
4

p,

which is a contradiction since p > 0. Hence, E[Z] > zp/2 − 4 log 4
p .

Similarly, we show that E[Z] < z7p/4 + 4 log 3, where z7p/4 � F−1(7p/4). Again suppose E[Z] ≥
z7p/4 + 4 log 3. Then, by the monotonicity of F,

p = E[F(Z)] ≥ E[F(Z)1{Z ≥ z7p/4}] ≥
7p
4
P(Z ≥ z7p/4) ≥

7p
4
P(Z ≥ E[Z] − 4 log 3),

where the last inequality holds since {Z ≥ z7p/4} ⊃ {Z ≥ E[Z] − 4 log 3}. Therefore, by the lower tail
bound,

p ≥ 7p
4
(1 − P(Z < E[Z] − 4 log 3)) ≥ 7p

4

(
1 − 1

3

)
=

7
6

p,

which is a contradiction since p > 0. Hence, E[Z] < z7p/4 + 4 log 3.
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Consider the interval I � [zp/2 − 4 log 4
p − 4, z7p/4 + 4 log 3 + 4]. The interval is bounded since F is

a CDF. Since f is a continuous function and strictly positive in the closed interval by assumption (A0),
using the extreme value theorem, we have that infx∈I f (x) ≥ f (ξ) = εp > 0 for some ξ ∈ I. Therefore,

E[ f (Z)] ≥ E[ f (Z)1{Z ∈ I}] ≥ εp P(Z ∈ I)

= εp

(
1 − P

(
Z < zp/2 − 4 log

4
p
− 4

)
− P(Z > z7p/4 + 4 log 3 + 4)

)

≥ εp(1 − P(Z ≤ E[Z] − 4) − P(Z ≥ E[Z] + 4)) ≥
(
1 − 2

e

)
εp .

The claim directly follows.

With the help of Lemma 4.2 and Lemma 4.3, we can show the following lower bound for the signed
triangle statistic in G(n,p,d,r) by expanding the signed triangle and then bounding each term individ-
ually. The proof is postponed to the appendix [17] due to limit of space.

Lemma 4.4. For r/log2 r  d1/6, there exist constants Cα,Cp > 0 such that for r ≥ Cα,

E[τ(G(n,p,d,r))] ≥
Cpn3

r3
√

d
.

4.2. Estimating the mean in the high dimension regime

In this part, we focus on the case when d/log2 d  r6, which complements the parameter regime
discussed in the previous subsection.

We start by bounding the probability of the following two events in G(n,p,d,r):

Λ� {1 ∼ 2,1 ∼ 3} and Δ� {1 ∼ 2,2 ∼ 3,3 ∼ 1}.

Since

P(Λ) = E[a1,2a1,3] = E[σ(〈x1, x2〉)σ(〈x1, x3〉)],

we directly have the following lemma as a consequence of (9).

Lemma 4.5. Let Λ be defined above. Then,

P(Λ) ≤ p2 +
α2

r4d
.

The probability of a triangle in G(n,p,d,r) is given by

P(Δ) = E[a1,2a2,3a3,1] = E[σ(〈x1, x2〉)σ(〈x2, x3〉)σ(〈x3, x1〉)].

We have the following estimate for the lower bound of the probability of a triangle.

Lemma 4.6. Suppose d/log2 d  r6. There exists a constant Cα > 0 such that for d ≥ Cα,

P(Δ) ≥ p3 +
λ3

4r3
√

d
.
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Due to limit of space, the proof of Lemma 4.6 is provided in the appendix [17].

Lemma 4.7. Assume d/log2 d  r6. Then, there exist constants Cp,Cα ≥ 0, for d ≥ Cα,

E[τ{1,2,3}] ≥
Cp

r3
√

d
.

Proof. The expected signed triangle can be written as

E[τ{1,2,3}] = E[(a1,2 − p)(a2,3 − p)(a3,1 − p)]

= E[a1,2a2,3a3,1] − p(E[a1,2a2,3] + E[a1,2a3,1] + E[a2,3a3,1])

+ p2(E[a1,2] + E[a2,3] + E[a3,1]) − p3

= P(Δ) − 3pP(Λ) + 2p2.

By Lemma 4.5 and Lemma 4.6, we have that for d ≥ Cα,

E[τ{1,2,3}] ≥
λ3

4r3
√

d
− 3pα2

r4d
.

Additionally, with Lemma 4.3, the claim follows directly.

The expected signed triangle statistic in G(n,p,d,r) satisfies

E[τ(G(n,p,d,r))]� E
[ ∑
{i, j ,k }∈

([n]
3
) τ{i, j ,k }

]
=

∑
{i, j ,k }∈

([n]
3
) E[τ{i, j ,k }] =

(
n
3

)
E[τ{1,2,3}].

Putting them together, we have the following lemma.

Lemma 4.8. When d/log2 d  r6, there exist constants Cp,Cα > 0 such that for d ≥ Cα,

E[τ(G(n,p,d,r))] ≥
Cpn3

r3
√

d
.

4.3. Estimating the variance

The variance of the signed triangle statistic in G(n,p,d,r) can be written as

Var[τ(G(n,p,d,r))] =
∑

{i, j ,k }, {i′, j′,k′ }⊂[n]
V{i, j ,k }, {i′, j′,k′ }

=

(
n
3

)
V{1,2,3}, {1,2,3} +

(
n
4

) (
4
2

)
V{1,2,3}, {1,2,4}

+

(
n
5

) (
5
1

) (
4
2

)
V{1,2,3}, {1,4,5} +

(
n
6

) (
6
3

)
V{1,2,3}, {4,5,6},
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where V{i, j ,k }, {i′, j′,k′ } is the covariance of two signed triangles defined by

V{i, j ,k }, {i′, j′,k′ } � EG(n,p,d,r)[τ{i, j ,k }τ{i′, j′,k′ }] − EG(n,p,d,r)[τ{i, j ,k }]2.

Since two triangles that do not share a vertex are independent,

V{1,2,3}, {4,5,6} = E[E[τ{1,2,3} | x1, x2, x3]E[τ{4,5,6} | x4, x5, x6]] − E[τ{1,2,3}]E[τ{4,5,6}] = 0.

For a signed triangle, EG(n,p,d,r)[τ2
{1,2,3}] ≤ 1. Then, we have that

V{1,2,3}, {1,2,3} ≤ EG(n,p,d,r)[τ2
{1,2,3}] ≤ 1.

Before proceeding to bounding the other two covariances, we present the following lemma which
directly follows from the results of previous parts.

Lemma 4.9. Let x, y, z ∼N(0, Id) be independent standard normal random vectors. Then, there exists
a constant Cα such that

E[Ez[(σ(〈x, z〉) − p)(σ(〈y, z〉) − p)]2] ≤ Cα

r4d
.

Proof. From the definition in (5),

Ez[(σ(〈x, z〉) − p)(σ(〈y, z〉) − p)] = γ(x, y).

By Lemma 3.1(a) and Lemma 3.1(b), we have that

E[γ(x, y)2] =Var[γ(x, y)] + E[γ(x, y)]2 ≤ 68α2

r4d
+
α4

r8d2 ≤ 68α2 + α4

r4d
,

where we used that r,d ≥ 1.

Lemma 4.10. There exists a constant Cα > 0 such that

E[τ{1,2,3}τ{1,2,4}] ≤
Cα

r4d
.

Proof. For simplicity of notation, denote

σ̄i, j � σ(〈xi, x j〉) − p.

Then,

E[τ{1,2,3}τ{1,2,4}] = E[σ̄2
1,2σ̄1,3σ̄2,3σ̄1,4σ̄2,4] ≤ E[σ̄1,3σ̄2,3σ̄1,4σ̄2,4]

= E[Ex3[σ̄1,3σ̄2,3]Ex4[σ̄1,4σ̄2,4]] = E[Ex3[σ̄1,3σ̄2,3]2].

The claim then follows directly from Lemma 4.9.

By Lemma 4.10 we thus have that

V{1,2,3}, {1,2,4} ≤ E[τ{1,2,3}τ{1,2,4}] ≤
Cα

r4d
.
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Lemma 4.11. There exists a constant Cα > 0 such that

E[τ{1,2,3}τ{1,4,5}] ≤
Cα

r4d
.

Proof. By the definition of the signed triangle,

E[τ{1,2,3}τ{1,4,5}] = E[σ̄1,2σ̄2,3σ̄3,1σ̄1,4σ̄4,5σ̄5,1] = E[Ex2 ,x3 [σ̄1,2σ̄2,3σ̄3,1]Ex4 ,x5 [σ̄1,4σ̄4,5σ̄5,1]]

= E[Ex2 ,x3[σ̄1,2σ̄2,3σ̄3,1]2],

where the last equality holds since (x2, x3) and (x4, x5) are identically distributed.
By Jensen’s inequality,

Ex2 ,x3[σ̄1,2σ̄2,3σ̄3,1]2 = Ex2[σ̄1,2 Ex3[σ̄2,3σ̄3,1]]2

≤ Ex2[σ̄
2
1,2 Ex3[σ̄2,3σ̄3,1]2] ≤ Ex2 [Ex3[σ̄2,3σ̄3,1]2].

Therefore, by Lemma 4.9,

E[τ{1,2,3}τ{1,4,5}] ≤ E[Ex3[σ̄2,3σ̄3,1]2] ≤
Cα

r4d
.

By Lemma 4.11 we thus have that

V{1,2,3}, {1,4,5} ≤ E[τ{1,2,3}τ{1,4,5}] ≤
Cα

r4d
.

Putting these bounds together, we have the following lemma.

Lemma 4.12. There exists a constant Cα > 0 such that

Var[τ(G(n,p,d,r))] ≤ n3 +
Cαn5

r4d
.

4.4. Concluding the proof

Combining Lemma 4.4, Lemma 4.8, and Lemma 4.12, we have for d,r ≥ Cα that when d/log2 d  r6

or r/log2 r  d1/6,

|E[τ(G(n,p,d,r))] − E[τ(G(n,p))]| ≥
Cpn3

r3
√

d
and

max{Var[τ(G(n,p,d,r)],Var[τ(G(n,p))]} ≤ n3 +
Cαn5

r4d
.

Therefore, by Chebyshev’s inequality,

TV(G(n,p,d,r),G(n,p)) ≥ 1 −
(C ′

pr6d

n3 +
C ′
p,αr2

n

)

for some constants C′
p,C

′
p,α > 0. Notice that r6d/n3 → 0 implies r2/n → 0. Theorem 1.1(b) is hence

proved.



2440 S. Liu and M.Z. Rácz

Acknowledgments

The authors would like to thank Ramon van Handel for insightful comments on several results and
Jiacheng Zhang for suggesting the proofs of Lemma 2.6 and Lemma 4.3. We also would like to thank
the editor and anonymous reviewers for refereeing the article and their helpful comments.

Funding

The authors were supported in part by NSF grant DMS-1811724.

Supplementary Material

Supplement to “A probabilistic view of latent space graphs and phase transitions” (DOI: 10.3150/
22-BEJ1547SUPP; .pdf). This supplement contains the proofs omitted from Section 4.

References

[1] Athreya, A., Fishkind, D.E., Tang, M., Priebe, C.E., Park, Y., Vogelstein, J.T., Levin, K., Lyzinski, V., Qin, Y.
and Sussman, D.L. (2017). Statistical inference on random dot product graphs: A survey. J. Mach. Learn.
Res. 18 Paper No. 226, 92. MR3827114

[2] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities: A Nonasymptotic Theory of
Independence. Oxford: Oxford Univ. Press. With a foreword by Michel Ledoux. MR3185193 https://doi.org/
10.1093/acprof:oso/9780199535255.001.0001

[3] Brennan, M., Bresler, G. and Huang, B. (2021). De Finetti-Style Results for Wishart Matrices: Combinatorial
Structure and Phase Transitions. arXiv preprint arXiv:2103.14011.

[4] Brennan, M., Bresler, G. and Nagaraj, D. (2020). Phase transitions for detecting latent geometry in ran-
dom graphs. Probab. Theory Related Fields 178 1215–1289. MR4168398 https://doi.org/10.1007/s00440-
020-00998-3

[5] Bubeck, S., Ding, J., Eldan, R. and Rácz, M.Z. (2016). Testing for high-dimensional geometry in random
graphs. Random Structures Algorithms 49 503–532. MR3545825 https://doi.org/10.1002/rsa.20633

[6] Bubeck, S. and Ganguly, S. (2018). Entropic CLT and phase transition in high-dimensional Wishart matrices.
Int. Math. Res. Not. IMRN 2 588–606. MR3801440 https://doi.org/10.1093/imrn/rnw243

[7] Chen, L.H.Y., Goldstein, L. and Shao, Q.-M. (2011). Normal Approximation by Stein’s Method. Probabil-
ity and Its Applications (New York). Heidelberg: Springer. MR2732624 https://doi.org/10.1007/978-3-642-
15007-4

[8] Devroye, L., György, A., Lugosi, G. and Udina, F. (2011). High-dimensional random geometric graphs and
their clique number. Electron. J. Probab. 16 2481–2508. MR2861682 https://doi.org/10.1214/EJP.v16-967

[9] Duchemin, Q. and De Castro, Y. (2021). Random Geometric Graph: Some recent developments and perspec-
tives. Preprint.

[10] Eldan, R. and Mikulincer, D. (2020). Information and dimensionality of anisotropic random geometric
graphs. In Geometric Aspects of Functional Analysis. Vol. I. Lecture Notes in Math. 2256 273–324. Cham:
Springer. MR4175752 https://doi.org/10.1007/978-3-030-36020-7_13

[11] Gibbs, A.L. and Su, F.E. (2002). On choosing and bounding probability metrics. Int. Stat. Rev. 70 419–435.
[12] Gilbert, E.N. (1961). Random plane networks. J. Soc. Indust. Appl. Math. 9 533–543. MR0132566
[13] Hoff, P.D., Raftery, A.E. and Handcock, M.S. (2002). Latent space approaches to social network analysis. J.

Amer. Statist. Assoc. 97 1090–1098. MR1951262 https://doi.org/10.1198/016214502388618906
[14] Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cambridge: Cambridge

Univ. Press. MR1474726 https://doi.org/10.1017/CBO9780511526169

https://doi.org/10.3150/22-BEJ1547SUPP
https://doi.org/10.3150/22-BEJ1547SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=3827114
https://mathscinet.ams.org/mathscinet-getitem?mr=3185193
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://arxiv.org/abs/arXiv:2103.14011
https://mathscinet.ams.org/mathscinet-getitem?mr=4168398
https://doi.org/10.1007/s00440-020-00998-3
https://doi.org/10.1007/s00440-020-00998-3
https://mathscinet.ams.org/mathscinet-getitem?mr=3545825
https://doi.org/10.1002/rsa.20633
https://mathscinet.ams.org/mathscinet-getitem?mr=3801440
https://doi.org/10.1093/imrn/rnw243
https://mathscinet.ams.org/mathscinet-getitem?mr=2732624
https://doi.org/10.1007/978-3-642-15007-4
https://doi.org/10.1007/978-3-642-15007-4
https://mathscinet.ams.org/mathscinet-getitem?mr=2861682
https://doi.org/10.1214/EJP.v16-967
https://mathscinet.ams.org/mathscinet-getitem?mr=4175752
https://doi.org/10.1007/978-3-030-36020-7_13
https://mathscinet.ams.org/mathscinet-getitem?mr=0132566
https://mathscinet.ams.org/mathscinet-getitem?mr=1951262
https://doi.org/10.1198/016214502388618906
https://mathscinet.ams.org/mathscinet-getitem?mr=1474726
https://doi.org/10.1017/CBO9780511526169


Latent space graphs and phase transitions 2441

[15] Jiang, T. and Li, D. (2015). Approximation of rectangular beta-Laguerre ensembles and large deviations. J.
Theoret. Probab. 28 804–847. MR3413957 https://doi.org/10.1007/s10959-013-0519-7

[16] Liu, S. and Rácz, M.Z. (2021). Phase transition in noisy high-dimensional random geometric graphs. arXiv
preprint arXiv:2103.15249.

[17] Liu, S. and Rácz, M.Z. (2023). Supplement to “A probabilistic view of latent space graphs and phase transi-
tions.” https://doi.org/10.3150/22-BEJ1547SUPP

[18] Ma, Z., Ma, Z. and Yuan, H. (2020). Universal latent space model fitting for large networks with edge covari-
ates. J. Mach. Learn. Res. 21 Paper No. 4, 67. MR4071187 https://doi.org/10.1109/tnnls.2020.3010690

[19] Marchal, O. and Arbel, J. (2017). On the sub-Gaussianity of the beta and Dirichlet distributions. Electron.
Commun. Probab. 22 Paper No. 54, 14. MR3718704 https://doi.org/10.1214/17-ECP92

[20] Penrose, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford: Oxford Univ. Press.
MR1986198 https://doi.org/10.1093/acprof:oso/9780198506263.001.0001

[21] Penrose, M.D. (2016). Connectivity of soft random geometric graphs. Ann. Appl. Probab. 26 986–1028.
MR3476631 https://doi.org/10.1214/15-AAP1110

[22] Polyanskiy, Y. and Wu, Y. (2012-2017). Lecture notes on Information Theory.
[23] Rácz, M.Z. and Bubeck, S. (2017). Basic models and questions in statistical network analysis. Stat. Surv. 11

1–47. MR3696007 https://doi.org/10.1214/17-SS117
[24] Rácz, M.Z. and Richey, J. (2019). A smooth transition from Wishart to GOE. J. Theoret. Probab. 32 898–906.

MR3959632 https://doi.org/10.1007/s10959-018-0808-2
[25] Stein, C.M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135–1151.

MR0630098
[26] Tang, M., Sussman, D.L. and Priebe, C.E. (2013). Universally consistent vertex classification for latent posi-

tions graphs. Ann. Statist. 41 1406–1430. MR3113816 https://doi.org/10.1214/13-AOS1112
[27] van Handel, R. (2016). Probability in High Dimension. APC 550 Lecture Notes (Princeton University).
[28] Wainwright, M.J. (2019). High-Dimensional Statistics: A Non-asymptotic Viewpoint. Cambridge Series in

Statistical and Probabilistic Mathematics 48. Cambridge: Cambridge Univ. Press. MR3967104 https://doi.
org/10.1017/9781108627771

[29] Wendel, J.G. (1948). Note on the gamma function. Amer. Math. Monthly 55 563–564. MR0029448 https://
doi.org/10.2307/2304460

[30] Young, S.J. and Scheinerman, E.R. (2007). Random dot product graph models for social networks. In Algo-
rithms and Models for the Web-Graph. Lecture Notes in Computer Science 4863 138–149. Berlin: Springer.
MR2504912 https://doi.org/10.1007/978-3-540-77004-6_11

[31] Zhang, A.R. and Zhou, Y. (2020). On the non-asymptotic and sharp lower tail bounds of random variables.
Stat 9 e314, 11. MR4193419 https://doi.org/10.1002/sta4.314

Received October 2021 and revised September 2022

https://mathscinet.ams.org/mathscinet-getitem?mr=3413957
https://doi.org/10.1007/s10959-013-0519-7
https://arxiv.org/abs/arXiv:2103.15249
https://doi.org/10.3150/22-BEJ1547SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=4071187
https://doi.org/10.1109/tnnls.2020.3010690
https://mathscinet.ams.org/mathscinet-getitem?mr=3718704
https://doi.org/10.1214/17-ECP92
https://mathscinet.ams.org/mathscinet-getitem?mr=1986198
https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
https://mathscinet.ams.org/mathscinet-getitem?mr=3476631
https://doi.org/10.1214/15-AAP1110
https://mathscinet.ams.org/mathscinet-getitem?mr=3696007
https://doi.org/10.1214/17-SS117
https://mathscinet.ams.org/mathscinet-getitem?mr=3959632
https://doi.org/10.1007/s10959-018-0808-2
https://mathscinet.ams.org/mathscinet-getitem?mr=0630098
https://mathscinet.ams.org/mathscinet-getitem?mr=3113816
https://doi.org/10.1214/13-AOS1112
https://mathscinet.ams.org/mathscinet-getitem?mr=3967104
https://doi.org/10.1017/9781108627771
https://doi.org/10.1017/9781108627771
https://mathscinet.ams.org/mathscinet-getitem?mr=0029448
https://doi.org/10.2307/2304460
https://doi.org/10.2307/2304460
https://mathscinet.ams.org/mathscinet-getitem?mr=2504912
https://doi.org/10.1007/978-3-540-77004-6_11
https://mathscinet.ams.org/mathscinet-getitem?mr=4193419
https://doi.org/10.1002/sta4.314

	Introduction
	A probabilistic view of the connection function
	Main result
	Related work
	Organization

	Notations and preliminaries
	Impossibility of detecting geometry
	Detecting geometry using the signed triangle statistic
	Estimating the mean in the large variance regime
	Estimating the mean in the high dimension regime
	Estimating the variance
	Concluding the proof

	Acknowledgments
	Funding
	Supplementary Material
	References

