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Abstract

We study the phase transition of the coalitional manipulation problem for generalized
scoring rules. Previously it has been shown that, under some conditions on the distribution
of votes, if the number of manipulators is o (

√
n), where n is the number of voters, then

the probability that a random profile is manipulable by the coalition goes to zero as the
number of voters goes to infinity, whereas if the number of manipulators is ω (

√
n), then

the probability that a random profile is manipulable goes to one. Here we consider the
critical window, where a coalition has size c

√
n, and we show that as c goes from zero to

infinity, the limiting probability that a random profile is manipulable goes from zero to
one in a smooth fashion, i.e., there is a smooth phase transition between the two regimes.
This result analytically validates recent empirical results, and suggests that deciding the
coalitional manipulation problem may be of limited computational hardness in practice.

1. Introduction

Finding “good” voting systems which satisfy some natural requirements is one of the main
goals in social choice theory. This problem is increasingly relevant in the area of artifi-
cial intelligence and in computer science more broadly, where virtual elections are now an
established tool for preference aggregation (see, e.g., Caragiannis & Procaccia, 2011).

A naturally desirable property of a voting system is strategyproofness (a.k.a. nonmanip-
ulability): no voter should benefit from voting strategically, i.e., voting not according to
her true preferences. However, Gibbard (1973) and Satterthwaite (1975) showed that no
reasonable voting system can be strategyproof. Before stating their result, let us specify
the problem more formally.

We consider n voters electing a single winner among m candidates. The voters specify
their opinion by ranking the candidates, and the winner is determined according to some
predefined social choice function (SCF) f : Sn

m → [m] of all the voters’ rankings, where Sm
denotes the set of all possible total orderings of the m candidates. We call a collection of
rankings by the voters a ranking profile. We say that a SCF is manipulable if there exists a
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ranking profile where a voter can achieve a more desirable outcome of the election according
to her true preferences by voting in a way that does not reflect her true preferences.

The Gibbard-Satterthwaite theorem states that any SCF which is not a dictatorship
(i.e., not a function of a single voter), and which allows at least three candidates to be
elected, is manipulable. This has contributed to the realization that it is unlikely to expect
truthfulness in voting. Consequently, there have been many branches of research devoted
to understanding the extent of the manipulability of voting systems, and to finding ways of
circumventing the negative results.

One approach, introduced by Bartholdi, Tovey, and Trick (1989), suggests computational
complexity as a barrier against manipulation: a SCF may not be manipulable in practice if it
is hard for a voter to compute a manipulative vote. A significant body of work focuses on the
worst-case complexity of manipulation (see the survey by Faliszewski and Procaccia, 2010).
Here we are interested specifically in the coalitional manipulation problem, where a group
of voters can change their votes in unison, with the goal of making a given candidate
win. Various variations of this problem are known to be NP-hard under many of the
common SCFs (Conitzer, Sandholm, & Lang, 2007; Xia, Zuckerman, Procaccia, Conitzer,
& Rosenschein, 2009; Betzler, Niedermeier, & Woeginger, 2011).

Crucially, this line of work focuses on worst-case complexity. While worst-case hardness
of manipulation is a desirable property for a SCF to have, it does not tell us much about
typical instances of the problem—is it usually easy or hard to manipulate? A recent line
of research on average-case manipulability has been questioning the validity of such worst-
case complexity results. The goal of this alternative line of work is to show that there
are no “reasonable” voting rules that are computationally hard to manipulate on average.
Specifically, the goal is to rule out the following informal statement: there are “good” voting
rules that are hard to manipulate on average under any “sufficiently rich” distribution over
votes.

Taking this point of view, showing easiness of manipulation under a restricted class of
distributions—such as i.i.d. votes or even uniform votes (the impartial culture assumption)—
is interesting, even if these do not necessarily capture all possible real-world elections.
Specifically, if we show that manipulation is easy under such distributions, then any average-
case hardness result would necessarily have to make some unnatural technical assumptions
to avoid these distributions. Studying such restricted distributions over votes is indeed
exactly what some recent papers have done.

For the coalitional manipulation problem, Procaccia and Rosenschein (2007a) first sug-
gested that it is trivial to determine whether manipulation is possible for most coalitional
manipulation instances, from a typical-case computational point of view; one can make a
highly informed guess purely based on the number of manipulators. Specifically, they stud-
ied a setting where there is a distribution over votes (which satisfies some conditions), and
concentrated on a family of SCFs known as positional scoring rules. They showed that if the
size of the coalition is o (

√
n), then with probability converging to 1 as n→ ∞, the coalition

is powerless, i.e., it cannot change the outcome of the election. In contrast, if the size of the
coalition is ω (

√
n) (and o (n)), then with probability converging to 1 as n→ ∞, the coali-

tion is all-powerful, i.e., it can elect any candidate. Later Xia and Conitzer (2008b) proved
an analogous result for so-called generalized scoring rules, a family that contains almost
all common voting rules. See also related work by Peleg (1979), Slinko (2004), Pritchard
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and Slinko (2006), and Pritchard and Wilson (2009). We discuss additional related work in
Section 1.2.

Our primary interest in this paper is to understand the critical window that these papers
leave open, when the size of the coalition is Θ (

√
n). Specifically, we are interested in the

phase transition in the probability of coalitional manipulation, when the size of the coalition
is c

√
n and c varies from zero to infinity, i.e., the transition from powerlessness to absolute

power.

In the past few decades there has been much research on the connection between phase
transitions and computationally hard problems (see, e.g., Fu & Anderson, 1986; Cheeseman,
Kanefsky, & Taylor, 1991; Achlioptas, Naor, & Peres, 2005). In particular, it is often
the case that the computationally hardest problems can be found at critical values of a
sharp phase transition (see, e.g., Gomes & Walsh, 2006, for an overview). On the other
hand, smooth phase transitions are often found in connection with computationally easy
(polynomial) problems, such as 2-coloring (Achlioptas, 1999) and 1-in-2 SAT (Walsh, 2002).
Thus understanding the phase transition in this critical window may shed light on where
the computationally hardest problems lie.

Recently, Walsh (2011) empirically analyzed two well-known voting rules—veto and
single transferable vote (STV)—and found that there is a smooth phase transition between
the two regimes. Specifically, Walsh studied coalitional manipulation with unweighted votes
for STV and weighted votes for veto, and sampled from a number of distributions in his
experiments, including i.i.d. distributions, correlated distributions, and votes sampled from
real-world elections. Our main result complements and improves upon Walsh’s analysis
in two ways; while Walsh’s results show how the phase transition looks like concretely for
veto and STV, we analytically show that the phase transition is indeed smooth for any
generalized scoring rule (including veto and STV) when the votes are i.i.d. This suggests
that deciding the coalitional manipulation problem may not be computationally hard in
practice.

1.1 Our Results

We now present our results, but first let us formally specify the setup of the problem.
We denote a ranking profile by σ = (σ1, . . . , σn) ∈ Sn

m, and for a candidate a, define
Wa = {σ ∈ Sn

m | f (σ) = a}, the set of ranking profiles where the outcome of f is a. Our
setup and assumptions are the following.

Assumption 1. We assume that the number of candidates, m, is constant.

Assumption 2. We assume that the SCF f is anonymous, i.e., it treats each voter equally.

Assumption 3. We assume that the votes of voters are i.i.d., according to some distribution
p on Sm. Furthermore, we assume that there exists δ > 0 such that for every π ∈ Sm,
p (π) ≥ δ (necessarily δ ≤ 1/m!).

If we were to assume only these, then our setup would include uninteresting cases, such
as when f is a constant—i.e., no matter what the votes are, a specific candidate wins.
Another less interesting case is when the probability of a given candidate winning vanishes
as n → ∞—we can then essentially forget about this candidate for large n (in the sense
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that a coalition of size Ω (n) would be necessary to make this candidate win). To exclude
these and focus on the interesting cases, we make an additional assumption which concerns
both the SCF and the distribution of votes.

Assumption 4. We assume that there exists ε > 0 such that for every n and for every
candidate a ∈ [m], the probability of a being elected is at least ε > 0, i.e., P (Wa) ≥ ε
(necessarily ε ≤ 1/m).

All four assumptions are satisfied when the distribution is uniform (i.e., under the im-
partial culture assumption) and the SCF is close to being neutral (i.e., neutral up to some
tie-breaking rules); in particular, they hold for all commonly used SCFs. The assumptions
are somewhat more general than this, although the i.i.d. assumption remains a restrictive
one. However, as discussed earlier, even showing easiness of manipulation under such a
restricted class of distributions is interesting.

As mentioned before, we are interested in the case when the coalition has size c
√
n for

some constant c. Define the probabilities

q
n
(c) := P

(
some coalition of size c

√
n can elect any candidate

)
,

qn (c) := P
(
some coalition of size c

√
n can change the outcome of the election

)
,

rn (c) := P
(
a specific coalition of size c

√
n can elect any candidate

)
,

rn (c) := P
(
a specific coalition of size c

√
n can change the outcome of the election

)
,

and let

q (c) := lim
n→∞

q
n
(c) , q (c) := lim

n→∞
qn (c) , r (c) := lim

n→∞
rn (c) , r (c) := lim

n→∞
rn (c) ,

provided these limits exist. Clearly q
n
(c) ≤ qn (c), rn (c) ≤ rn (c), rn (c) ≤ q

n
(c), and

rn (c) ≤ qn (c).
Before we describe our results, which deal with these quantities, we first explain how

these relate to the various variants of the coalitional manipulation problem. In the coali-
tional manipulation problem the coalition is fixed, and thus the relevant quantities are rn (c)
and rn (c). Closely related is the problem of determining the margin of victory, which is the
minimum number of voters who need to change their votes to change the outcome of the
election. Also related is the problem of bribery, the minimum number of voters who need
to change their votes to make a given candidate win. The main difference between these
problems is that in coalitional manipulation the coalition is fixed, whereas in the latter two
problems the coalition is not fixed. Hence the relevant quantities for studying the latter
two are q

n
(c) and qn (c). Our tools also allow us to deal with other related quantities (such

as microbribery, Faliszewski, Hemaspaandra, Hemaspaandra, & Rothe, 2009), but we focus
our attention on the four quantities described above.

Our first result analyzes the case when the size of the coalition is c
√
n for large c. We

show that if c is large enough, then with probability close to 1, a specific coalition of size c
√
n

can elect any candidate. This holds for any SCF that satisfies the above (mild) restrictions.

Theorem 1.1. Assume that Assumptions 1, 2, 3, and 4 hold. For any η > 0 there exists a
constant c = c (η, δ, ε,m) such that rn (c) ≥ 1− η for every n. In particular, we can choose

c = (4/δ) log (2m!/η)
[√

log (2m/η) +
√

log (2/ε)
]
.
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It follows that

lim
c→∞

lim inf
n

rn (c) = 1.

This result extends previous theorems of Procaccia and Rosenschein (2007a), and Xia
and Conitzer (2008b), from scoring rules and generalized scoring rules, respectively, to
anonymous SCFs.

Our second result deals with the case when the size of the coalition is c
√
n for small

c, and the transition as c goes from 0 to ∞. Here we assume additionally that f is a
generalized scoring rule (to be defined in Section 3.1.1); this is needed because there exist
(pathological) anonymous SCFs for which the result below does not hold (see the beginning
of Section 3 for an example).

Theorem 1.2. Assume that Assumptions 1, 2, 3, and 4 hold, and furthermore that f is a
generalized scoring rule. Then:

(1) The limits q (c), q (c), r (c) and r (c) exist.

(2) There exists a constant K = K (f, δ) < ∞ such that q (c) ≤ Kc; in particular,
limc→0 q (c) = 0.

(3) For all 0 < c < ∞, 0 < q (c) ≤ q (c) < 1 and 0 < r (c) ≤ r (c) < 1, and furthermore
q (c), q (c), r (c) and r (c) are all continuously differentiable in c with bounded derivative.

In words, Part 2 means that if c is small enough then with probability close to 1 no
coalition of size c

√
n can change the outcome of the election, and the statements about

r and r in Part 3 mean that the coalitional manipulation problem has a smooth phase
transition: as the number of manipulators increases, the probabilities that a coalition has
some power, and that it has absolute power, increase smoothly. Parts 1 and 2 of the theorem
simply make a result of Xia and Conitzer (2008b) more precise, by extending the analysis
to the Θ(

√
n) regime. More importantly, in the proofs of these statements we introduce the

machinery needed to establish Part 3, which is our main result.
Since the coalitional manipulation problem does not have a sharp phase transition, The-

orem 1.2 can be interpreted as suggesting that realistic distributions over votes are likely
to yield coalitional manipulation instances that are tractable in practice, even if the size
of the coalition concentrates on the previously elusive Θ(

√
n) regime; this is true for any

generalized scoring rule, and in particular for almost all common social choice functions (an
exception is Dodgson’s rule). This interpretation has a negative flavor in further strength-
ening the conclusion that worst-case complexity is a poor barrier to manipulation.

However, the complexity glass is in fact only half empty. The probability that the margin
of victory is at most c

√
n is captured by the quantity qn, hence Part 3 of Theorem 1.2 also

implies that the margin of victory problem has a smooth phase transition. As recently
pointed out by Xia (2012a), efficiently solving the margin of victory problem could help
in post-election audits—used to determine whether electronic elections have resulted in an
incorrect outcome due to software or hardware bugs—and its tractability is in fact desirable.

The methods we use are flexible, and can be extended to various setups of interest that do
not directly satisfy our assumptions above, for instance single-peaked preferences. Consider
a one-dimensional political spectrum represented by the interval [0, 1], and fix the location
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of the candidates. Assume voters are uniformly distributed on the interval, independently
of each other. For technical reasons, this distribution does not satisfy our assumptions,
since there will be rankings π ∈ Sm such that p (π) = 0; however, our tools allow us
to deal with this setting as well. For instance, if the locations of the m candidates are{

1
2m ,

3
2m , . . . ,

2m−1
2m

}
, then our results hold (with appropriate quantitative modifications).

Similarly, if the locations were something else, then there would exist a subset of candidates
who have an asymptotically nonvanishing probability of winning, and the same results hold
restricted to this subset of candidates.

Finally, we discuss the role of tie-breaking in our setup, since this is often an important
issue when studying manipulation. However, since we consider manipulation by coalitions
of size c

√
n, ties where there exist a constant number of voters such that if their votes are

changed appropriately there is no longer a tie, are not relevant. Indeed, our tools allow us
to extend the results of Theorem 1.2 to a class of SCFs slightly beyond generalized scoring
rules, and, in particular, these allow for arbitrary tie-breaking rules (see Section 3.2.1 for
details).

1.2 Additional Related Work

A recent line of research with an average-case algorithmic flavor also suggests that manip-
ulation is indeed typically easy; see, e.g., the work of Kelly (1993), Conitzer and Sand-
holm (2006), Procaccia and Rosenschein (2007b), and Zuckerman et al. (2009) for results
on certain restricted classes of SCFs. A different approach, initiated by Friedgut, Kalai,
Keller and Nisan (2008, 2011), who studied the fraction of ranking profiles that are manip-
ulable, also suggests that manipulation is easy on average; see further the work of Xia and
Conitzer (2008a), Dobzinski and Procaccia (2008), Isaksson, Kindler and Mossel (2012),
and Mossel and Rácz (2012). We refer to the survey by Faliszewski and Procaccia (2010)
for a detailed history of the surrounding literature. See also related literature in economics,
e.g., the work of Good and Mayer (1975), Chamberlain and Rothschild (1981), and Myatt
(2007).

Recent work by Xia (2012a) is independent from, and closely related to, our work.
As mentioned above, Xia’s paper is concerned with computing the margin of victory in
elections. He focuses on computational complexity questions and approximation algorithms,
but one of his results is similar to Parts 1 and 2 of Theorem 1.2. However, our analysis is
completely different; our approach facilitates the proof of Part 3 of the theorem, which is our
main contribution. An even more recent (and also independent) manuscript by Xia (2012b)
considers similar questions for generalized scoring rules and captures additional types of
strategic behavior (such as control), but again, crucially, this work does not attempt to
understand the phase transition (nor does it subsume our Theorem 1.1).

2. Large Coalitions

Without further ado, we prove Theorem 1.1. The main idea is to observe that for i.i.d. dis-
tributions, the Hamming distance of a random ranking profile from a fixed subset of ranking
profiles concentrates around its mean. The theorem follows from standard concentration
inequalities.
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Proof of Theorem 1.1. For σ, σ′ ∈ Sn
m, define

d
(
σ, σ′

)
=

1

n

n∑
i=1

1
[
σi 6= σ′i

]
,

i.e., d (σ, σ′) is 1/n times the Hamming distance of σ and σ′. If U is a subset of ranking
profiles and σ is a specific ranking profile then define dU (σ) = minσ′∈U d (σ, σ

′). The
function dU is Lipschitz with constant 1/n, and therefore by McDiarmid’s inequality we
have the following concentration inequality:

P (|dU (σ)− EdU | ≥ c) ≤ 2 exp
(
−2c2n

)
(1)

for any c > 0 and U ⊆ Sn
m. Suppose U ⊆ Sn

m has measure at least ε, i.e., U is such that
P (σ ∈ U) ≥ ε, and take γ such that 2 exp

(
−2γ2n

)
< ε, e.g., let γ =

√
log (2/ε)/

√
n. Then

(1) implies that there exists σ ∈ U such that |dU (σ)− EdU | ≤ γ, but since dU (σ) = 0, this
means that EdU ≤ γ. So for such a set U , we have

P (dU (σ) > γ + c) ≤ exp
(
−2c2n

)
for any c > 0. Choosing c = B/

√
n and defining B′ = B +

√
log (2/ε) we get that

P
(
dU (σ) > B′/

√
n
)
≤ exp

(
−2B2

)
. (2)

In the language of the usual Hamming distance, this means that the probability that the
ranking profile needs to be changed in at least B′√n coordinates to be in U is at most
exp

(
−2B2

)
, which can be made arbitrarily small by choosing B large enough.

By our assumption, P (σ ∈Wa) ≥ ε for every a, and therefore by (2) and a union bound
we get

P
(
∃a : dWa (σ) > B′/

√
n
)
≤ m exp

(
−2B2

)
.

By choosing B =
√

log (2m/η), this probability is at most η/2.
Consider a specific coalition of size DB′√n, where D = D (δ,m) will be chosen later.

Using Chernoff’s bound and a union bound, with probability close to one, for every possible
ranking π the coalition has at least B′√n voters with the ranking π:

P
(
∃π ∈ Sm : coalition of size DB′√n has less than B′√n voters with ranking π

)
≤ m!P

(
Bin

(
DB′√n, δ

)
< B′√n

)
≤ m! exp

(
− (1− 1/Dδ)2DB′√nδ/2

)
≤ m! exp

(
− (1− 1/Dδ)2Dδ/2

)
,

where Bin (DB′√n, δ) denotes a binomial random variable with parameters DB′√n and δ,
and where we used our assumption that for every voter the probability for every ranking is
at least δ > 0. Choosing D = (4/δ) log (2m!/η), this probability is at most η/2.

By the anonymity of f , the outcome only depends on the number of voters voting
according to each ranking. Consequently, if σ is such that it is at a distance of at most
B′/

√
n away from each Wa, and where for each ranking π there are at least B′√n voters in

the coalition with ranking π, then the coalition is able to achieve any outcome. Using the
above and a union bound this happens with probability at least 1− η.
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3. Small Coalitions and the Phase Transition

This section is almost entirely devoted to the proof of Theorem 1.2, but it also includes
some helpful definitions, examples, and intuitions.

Consider the following example of a SCF. For a ∈ [m] let na (σ) denote the number
of voters who ranked candidate a on top in the ranking profile σ. Define the SCF f by
f (σ) =

∑m
a=1 ana (σ) mod m. This SCF is clearly anonymous (since it only depends on

the number of voters voting according to specific rankings), and moreover it is easy to see
that any single voter can always elect any candidate.

This example shows that, in general, we cannot have a matching lower bound for the
size of the manipulating coalition on the order of

√
n. However, this is an artificial example

(one would not consider such a voting system in real life), and we expect that a matching
lower bound holds for most reasonable SCFs.

Xia and Conitzer (2008b) introduced a large class of SCFs called generalized scoring
rules, which include most commonly occurring SCFs. In the following we introduce this
class of SCFs, provide an alternative way of looking at them (as so-called “hyperplane
rules”), and show that for this class of SCFs if the coalition has size c

√
n for small enough

c, then the probability of being able to change the outcome of the election can be arbitrarily
close to zero. At the end of the section we then prove the smooth transition as stated in
Part 3 of Theorem 1.2.

3.1 Generalized Scoring Rules, Hyperplane Rules, and their Equivalence

In this section we introduce generalized scoring rules and hyperplane rules and show their
equivalence.

3.1.1 Generalized Scoring Rules

We now define generalized scoring rules.

Definition 1. For any y, z ∈ Rk, we say that y and z are equivalent, denoted by y ∼ z, if
for every i, j ∈ [k], yi ≥ yj if and only if zi ≥ zj.

Definition 2. A function g : Rk → [m] is compatible if for any y ∼ z, g (y) = g (z).

That is, for any function g that is compatible, g (y) is completely determined by the
total preorder of {y1, . . . , yk} (a total preorder is an ordering in which ties are allowed).

Definition 3 (Generalized scoring rules). Let k ∈ N, f : Sm → Rk (called a generalized
scoring function), and g : Rk → [m] where g is compatible (g is called a decision function).
The functions f and g determine the generalized scoring rule GS (f, g) as follows: for
σ ∈ Sn

m, let

GS (f, g) (σ) := g

(
n∑

i=1

f (σi)

)
.

From the definition it is clear that every generalized scoring rule (GSR) is anonymous.

930



A Smooth Transition from Powerlessness to Absolute Power

3.1.2 Hyperplane Rules

Preliminaries and notation. In the following, for a SCF let us write f ≡ fn, i.e., let us
explicitly note that f is a function on n voters; also let us write σ ≡ σn. Since the SCF
fn is anonymous, the outcome only depends on the numbers of voters who vote according
to particular rankings. Let Dn denote the set of points in the probability simplex ∆m! for
which all coordinates are integer multiples of 1/n. Let us denote a typical element of the
probability simplex ∆m! by x = {xπ}π∈Sm

. For a ranking profile σn, let us denote the
corresponding element of the probability simplex by x (σn), i.e., for all π ∈ Sm,

x (σn)π =
1

n

n∑
i=1

1 [σi = π] .

By our assumptions the outcome of fn only depends on x (σn), so by abuse of notation we
may write that fn : ∆m!|Dn → [m] with fn (σ

n) = fn (x (σ
n)).

We are now ready to define hyperplane rules.

Definition 4 (Hyperplane rules). Fix a finite set of affine hyperplanes of the simplex ∆m!:
H1, . . . , H`. Each affine hyperplane partitions the simplex into three parts: the affine hyper-
plane itself and two open halfspaces on either side of the affine hyperplane. Thus the affine
hyperplanes H1, . . . , H` partition the simplex into finitely many (at most 3`) regions. Let
F : ∆m! → [m] be a function which is constant on each such region. Then the sequence of
SCFs {fn}n≥1, fn : Sn

m → [m], defined by

fn (σ
n) = F (x (σn))

is called a hyperplane rule induced by the affine hyperplanes H1, . . . , H` and the function F .

A function F : ∆m! → [m] naturally partitions the simplex ∆m! into m parts based on
the outcome of F . (For hyperplane rules this partition is coarser than the partition of ∆m!

induced by the affine hyperplanes H1, . . . , H`.) We abuse notation and denote these parts
by {Wa}a∈[m]. The following definition will be useful for us.

Definition 5 (Interior and boundaries of a partition induced by F ). We say that x ∈ ∆m!

is an interior point of the partition {Wa}a∈[m] induced by F if there exists α > 0 such that

for all y ∈ ∆m! for which |x− y| ≤ α, we have F (x) = F (y). Otherwise, we say that
x ∈ ∆m! is on the boundary of the partition, which we denote by B.

For a hyperplane rule the boundary B is contained in the union of the corresponding
affine hyperplanes. Conversely, suppose F : ∆m! → [m] is an arbitrary function and the
sequence of (anonymous) SCFs {fn}n≥1, fn : Sn

m → [m] is defined by fn (σ
n) = F (x (σn)).

If the boundary B of F is contained in the union of finitely many affine hyperplanes of
∆m!, then F is not necessarily a hyperplane rule, but there exists a hyperplane rule F̂ such
that F and F̂ agree everywhere except perhaps on the union of the finitely many affine
hyperplanes.
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3.1.3 Equivalence

Xia and Conitzer (2009) gave a characterization of generalized scoring rules: a SCF is a
generalized scoring rule if and only if it is anonymous and finitely locally consistent (see Xia
& Conitzer, 2009, Definition 5). This characterization is related to saying that generalized
scoring rules are the same as hyperplane rules, yet we believe that spelling this out explicitly
is important, because the geometric viewpoint of hyperplane rules is somewhat different,
and in this probabilistic context it is also more flexible.

Lemma 3.1. The class of generalized scoring rules coincides with the class of hyperplane
rules.

Proof. First let us show that every hyperplane rule is a generalized scoring rule. Let us
consider the hyperplane rule induced by affine hyperplanes H1, . . . , H` of the simplex ∆m!,
and the function F : ∆m! → [m]. The affine hyperplanes of ∆m! can be thought of as
hyperplanes of Rm! that go through the origin—abusing notation we also denote these by
H1, . . . , H`. Let u1, . . . , u` denote unit normal vectors of these hyperplanes.

We need to define functions f and g such that for every ranking profile σn ∈ Sn
m,

GS (f, g) (σn) = F (x (σn)). We will have f : Sm → R`+1 and g : R`+1 → [m]. Coordinates
1, . . . , ` of f correspond to hyperplanes H1, . . . ,H`, while the last coordinate of f will always
be 0 (this is a technical necessity to make sure that the function g is compatible). Let us
look at the coordinate corresponding to hyperplane Hj with normal vector uj . For π ∈ Sm
define

(f (π))j ≡ (f (π))Hj
≡ (f (π))uj

:= (uj)π ,

where the coordinates of Rm! are indexed by elements of Sm. Then

(f (σn))j :=

n∑
i=1

(f (σi))j =

n∑
i=1

(uj)σi
= n (uj · x (σn)) .

The sign of (f (σn))j thus tells us which side of the hyperplane Hj the point x (σn) lies

on. We define g (y) for all y ∈ R`+1 such that y`+1 = 0; then the requirement that g be
compatible defines g for all y ∈ R`+1. For x ∈ R, define sgn (x) to be 1 if x > 0, −1 if x < 0,
and 0 if x = 0.

To define g (y1, . . . , y`, 0), look at the vector (sgn (y1) , . . . , sgn (y`)). This vector deter-
mines a region in ∆m! in the following way: if sgn (yj) = 1, then the region lies in the
same open halfspace as uj , if sgn (yj) = −1 then the region lies in the open halfspace
which does not contain uj , and finally if yj = 0, then the region lies in the hyperplane
Hj . Now we define g (y1, . . . , y`, 0) to be the value of F on the region of ∆m! defined by
(sgn (y1) , . . . , sgn (y`)). The value of g (y1, . . . , y`, 0) is well-defined since F is constant in
each such region. Moreover, if we take y ∼ z with y`+1 = z`+1 = 0, then necessarily
(sgn (y1) , . . . , sgn (y`)) = (sgn (z1) , . . . , sgn (z`)), and thus g (y) = g (z): so g is compatible
(this is where we used the extra coordinate).

Now let us show that every generalized scoring rule is a hyperplane rule. Suppose a
generalized scoring rule is given by functions f : Sm → Rk and g : Rk → [m]. For a ranking
profile σn ∈ Sn

m, define f (σn) :=
∑n

i=1 f (σi) = n
∑

π∈Sm
f (π) (x (σn))π; in this way we

can view f as a function mapping Nm!
≥0 \ {0} to Rk (and hence can also view GS (f, g) as a
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function mapping Nm!
≥0 \ {0} to [m]). Since this mapping is homogeneous, we may extend

the domain of f (and hence that of GS (f, g)) to Qm!
≥0 \ {0} in the natural way.

For a total preorderO, letRO =
{
x ∈ Qm!

≥0 \ {0} : f (x) ∼ O
}
. By definition, if x, y ∈ RO

then g (f (x)) = g (f (y)), i.e., GS (f, g) is constant in each region RO. Each region RO is
a Q-convex cone, i.e. if x, y ∈ RO and λ ∈ Q∩ [0, 1], then λx + (1− λ) y ∈ RO, and
furthermore if µ ∈ Q>0, then µx ∈ RO (both of these properties follow immediately from
Definition 1). Thus we can write Qm!

≥0 \ {0} as the disjoint union of the Q-convex cones

{RO}O. The only way to do this is by taking finitely many hyperplanes of Rm! and cutting
Qm!

≥0 \ {0} using these hyperplanes; a precise statement of this can be found in Appendix A.
This essentially follows from a result by Kemperman (1986, Thm. 2)—to keep the paper self-
contained we reproduce in Appendix A his results and proof, and show how the statement
above follows from his results. Since our function is homogeneous, we need only look at
the values of GS (f, g) on the simplex ∆m!. By the above, the simplex is divided into
regions

{
RO ∩∆m!

}
O via affine hyperplanes of ∆m!, and the function GS (f, g) is constant

on RO ∩∆m! for each total preorder O, so GS (f, g) is indeed a hyperplane rule.

3.1.4 Examples

Most commonly used SCFs are generalized scoring rules / hyperplane rules, including
all positional scoring rules, instant-runoff voting, Coombs’ method, contingent vote, the
Kemény-Young method, Bucklin voting, Nanson’s method, Baldwin’s method, Copeland’s
method, maximin, and ranked pairs. Some of these examples were already shown by Xia
and Conitzer (2008b, 2009), but nevertheless in Appendix B we detail explanations of many
of these examples. The main reason for this is that the perspective of a hyperplane rule
arguably makes these explanations simpler and clearer. A rule that does not fit into this
framework is Dodgson’s rule, which is not homogeneous (see, e.g., Brandt, 2009), and there-
fore it is not a hyperplane rule.

3.2 Small Coalitions for Generalized Scoring Rules

We now show that for generalized scoring rules, a coalition of size c
√
n for small enough

c can only change the outcome of the election with small probability. By the equivalence
above, we can work in the framework of hyperplane rules.

We consider two metrics on ∆m!: the L1 metric, denoted by d1 or ‖·‖1, and the L2

metric, denoted by d2 or ‖·‖2. The L1 metric is important in this setting, since changing
the votes of voters corresponds to moving in the L1 metric on ∆m!; this connection is
formalized in the following lemma.

Lemma 3.2. Let σn, τn ∈ Sn
m. Then d1 (x (σ

n) , x (τn)) ≤ 2
ndH (σn, τn), where dH denotes

Hamming distance, i.e., dH (σn, τn) =
∑n

i=1 1 [σi 6= τi]. Furthermore, if y ∈ Dn, then there
exists τ̂n ∈ Sn

m such that x (τ̂n) = y and d1 (x (σ
n) , y) = 2

ndH (σn, τ̂n).

Proof. Let π0 = σn, and for i = 1, . . . , n, define the ranking profile πi as

πi = (τ1, . . . , τi, σi+1, . . . , σn) .
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By definition, πn = τn. The desired inequality then follows from the triangle inequality:

d1 (x (σ
n) , x (τn)) = d1

(
x
(
π0
)
, x (πn)

)
≤

n∑
i=1

d1
(
x
(
πi−1

)
, x
(
πi
))

=

n∑
i=1

2

n
1 [σi 6= τi] =

2

n
dH (σn, τn) .

For the second part of the lemma, construct τ̂n as follows. For each π ∈ Sm, let Iπ :=
{i ∈ [n] : σi = π}. If x (σn)π ≤ yπ, then for every i ∈ Iπ, let τ̂i = π. If x (σn)π > yπ, then
choose a subset of indices I ′π ⊂ Iπ of size |I ′π| = nyπ, and for every i ∈ I ′π, let τ̂i = π. Finally,
define the rest of the coordinates of τ̂n so that x (τ̂n) = y. The construction guarantees
that then d1 (x (σ

n) , y) = 2
ndH (σn, τ̂n).

It is therefore natural to define distances from the boundary B using the L1 metric:

Definition 6 (Blowup of boundary). For α > 0, we define the blowup of the boundary B
by α to be

B+α =
{
y ∈ ∆m! : ∃x ∈ B such that ‖x− y‖1 ≤ α

}
.

In order for some coalition to be able to change the outcome of the election at a given
ranking profile, the point on the simplex corresponding to this ranking profile needs to be
sufficiently close to the boundary B; this is formulated in the following lemma.

Lemma 3.3. Suppose we have n voters, a coalition of size k, and the ranking profile is
σn ∈ Sn

m, which corresponds to the point x (σn) ∈ ∆m! on the probability simplex. A
necessary condition for the coalition to be able to change the outcome of the election from
this position is that x (σn) ∈ B+2k/n. Conversely, if x (σn) ∈ B+(2k−m!)/n, then there exists
a coalition of size k that can change the outcome of the election.

Proof. For any ranking profile τn that the coalition can reach, we have dH (σn, τn) ≤ k,
and so by Lemma 3.2 we have d1 (x (σ

n) , x (τn)) ≤ 2k
n . If x (σn) /∈ B+2k/n, then for every

ranking profile τn which the coalition can reach, x (σn) and x (τn) are in the same region
determined by the hyperplanes, and so F (x (τn)) = F (x (σn)), i.e., the coalition cannot
change the outcome of the election.

Now suppose that x (σn) ∈ B+(2k−m!)/n. Then by definition there exists y ∈ B such
that d1 (x (σ

n) , y) ≤ 2k−m!
n . Since y ∈ B, there exists ŷ ∈ Dn such that d1 (y, ŷ) ≤ m!

n and

F (ŷ) 6= F (x (σn)). By the triangle inequality, d1 (x (σ
n) , ŷ) ≤ 2k

n , and then by the second
part of Lemma 3.2 there exists τ̂n ∈ Sn

m such that x (τ̂n) = ŷ and dH (σn, τ̂n) ≤ k. The
coalition consisting of voters with indices in I := {i ∈ [n] : σi 6= τ̂i} can thus change the
outcome of the election.

Corollary 3.4. If we have n voters, the probability that some coalition of size k can change
the outcome of the election is bounded from below by P

(
x (σn) ∈ B+(2k−m!)/n

)
and from

above by P
(
x (σn) ∈ B+2k/n

)
, where σn is drawn according to the probability distribution

satisfying the conditions of the setup.
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Gaussian limit. Due to the i.i.d.-ness of the votes, the multinomial random variable x (σn)
concentrates around its expectation, and the rescaled random variable

x̃ (σn) :=
√
n (x (σn)− E (x (σn)))

converges to a normal distribution, with zero mean and specific covariance structure. For
our analysis it is better to use this Gaussian picture, and thus we will reformulate the
preliminaries above in this limiting setting. First, let us determine the limiting distribution.

Lemma 3.5. We have x̃ (σn) ⇒n N (0,Σ), where the covariance structure is given by
Σ = diag (p)− ppT , where recall that p is the distribution of a vote.

Proof. It is clear that E (x̃ (σn)) = 0. Computing the covariance structure, we first have
that E

(
x2π
)
= 1

n2

∑n
i,j=1 P (σi = π, σj = π) =

(
1− 1

n

)
p (π)2 + 1

np (π), from which we have

Var (xπ) =
1
n

(
p (π)− p (π)2

)
and thus Var (x̃π) = p (π)− p (π)2. Then similarly for π 6= π′

we have

E (xπxπ′) =
1

n2

n∑
i,j=1

P
(
σi = π, σj = π′

)
=

1

n2

∑
i 6=j

p (π) p
(
π′
)
=

(
1− 1

n

)
p (π) p

(
π′
)
,

from which we have that Cov (xπ, xπ′) = − 1
np (π) p (π

′) and thus

Cov (x̃π, x̃π′) = −p (π) p
(
π′
)
.

Note: because of the concentration of x (σn) around its mean, and our assumption that
for every n and for every candidate a ∈ [m], P (f (σn) = a) ≥ ε, it is necessary that for every
α > 0 and for every candidate a ∈ [m] there exists y ∈ ∆m! such that ‖y − E (x (σ1))‖1 ≤ α
and F (y) = a.

Denote by µ the distribution of N (0,Σ) and let X̃ denote a random variable distributed
according to µ. Note that µ is a degenerate multivariate normal distribution, as the support
of µ concentrates on the hyperplane H0 where the coordinates sum to zero. (This is because∑

π∈Sm
x̃ (σn)π = 0.)

The underlying function F : ∆m! → [m] corresponds to a function F̃ : Rm! |H0 → [m]
in the Gaussian limit, and this function F̃ partitions Rm! |H0 into m parts based on the

outcome of F̃ . We denote these parts by
{
W̃a

}
a∈[m]

. We will need the following definitions

and properties of boundaries, analogous to those above.

Definition 7 (Interior and boundaries of a partition). We say that x̃ ∈ Rm! |H0 is an

interior point of the partition
{
W̃a

}
a∈[m]

induced by F̃ if there exists α > 0 such that for

all ỹ ∈ Rm! |H0 for which ‖x̃− ỹ‖1 ≤ α, we have F̃ (x̃) = F̃ (ỹ). Otherwise, we say that
x̃ ∈ Rm! |H0 is on the boundary of the partition, which we denote by B̃.

Lemma 3.6. If the boundary B comes from a hyperplane rule, i.e., B is contained in the
union of ` affine hyperplanes in ∆m!, then B̃ is contained in the union of ˜̀ hyperplanes of
Rm! |H0, where

˜̀≤ `.
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Proof. Two things can happen to an affine hyperplane H of ∆m! when we take the Gaussian
limit: (1) if E (x (π)) ∈ H, then translation by E (x (π)) takes H into a hyperplane H̃ of
Rm! |H0 , and since H̃ goes through the origin, scaling (in particular by

√
n) does not move

this hyperplane; (2) if E (x (π)) /∈ H, then translation by E (x (π)) takes H into an affine
hyperplane H̃ of Rm! |H0 that does not go through the origin, and then scaling by

√
n moves

H̃ to an affine hyperplane of Rm! |H0 whose L2 distance from the origin is proportional to√
n, so in the n→ ∞ limit this affine hyperplane “vanishes”.

Definition 8 (Blowup of boundary). For α > 0, we define the blowup of the boundary B̃
by α to be

B̃+α =
{
ỹ ∈ Rm! |H0 : ∃x̃ ∈ B̃ such that ‖x̃− ỹ‖1 ≤ α

}
.

Let us focus specifically on a coalition of size c
√
n for some (small) constant c. Corol-

lary 3.4 implies the following.

Corollary 3.7. For hyperplane rules the limit of the probability that in an election with n

voters some coalition of size c
√
n can change the outcome of the election is µ

(
X̃ ∈ B̃+2c

)
.

The following claim, together with Corollary 3.7, tells us that for hyperplane rules a
coalition of size c

√
n can change the outcome of the election with only small probability,

given that c is sufficiently small, proving Part 2 of Theorem 1.2.

Claim 3.8. Suppose our SCF is a hyperplane rule, and in particular let
{
H̃i

}M

i=1
be a

collection of hyperplanes in Rm! |H0 such that B̃ ⊆
⋃M

i=1 H̃i. Then

µ
(
X̃ ∈ B̃+c

)
≤
√

2

π

Mc√
δ
.

Proof. By our condition and a union bound we have

µ
(
X̃ ∈ B̃+c

)
≤

M∑
i=1

µ
(
X̃ ∈ H̃+c

i

)
.

For a hyperplane H̃ in Rm! |H0 , denote (one of) the corresponding unit normal vector(s) (in
the hyperplane H0) by u. Then

H̃ =
{
x̃ ∈ Rm! |H0 : u · x̃ = 0

}
and since L1 distance is always greater than L2 distance, we have

H̃+c ⊆
{
x̃ ∈ Rm! |H0 : ∃ỹ ∈ H̃ such that ‖x̃− ỹ‖2 ≤ c

}
=
{
x̃ ∈ Rm! |H0 : |u · x̃| ≤ c

}
.

Since X̃ is a multidimensional Gaussian r.v., u ·X̃ is a one-dimensional Gaussian r.v. (which
is centered). Therefore

µ
(
X̃ ∈ H̃+c

)
≤ µ

(
u · X̃ ∈ [−c, c]

)
≤ 2c√

2πVar
(
u · X̃

) .
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We have that

Var
(
u · X̃

)
= E

(
u · X̃

)2
= E

(
uT X̃X̃Tu

)
= uTΣu,

and so all that remains to show is that

min
u:‖u‖=1,u⊥1

uTΣu ≥ δ,

where 1 is the m!-dimensional vector having 1 in every coordinate.

Let λ1 (Σ) ≥ λ2 (Σ) ≥ · · · ≥ λm! (Σ) denote the eigenvalues of Σ. Since Σ is positive
semidefinite, all eigenvalues are nonnegative. We know that 0 is an eigenvalue of Σ (the
corresponding eigenvector is 1), so λm! (Σ) = 0. By the variational characterization of
eigenvalues we have

min
u:‖u‖=1,u⊥1

uTΣu = λm!−1 (Σ) ,

and so we need to show that λm!−1 (Σ) ≥ δ. To do this we use Weyl’s inequalities.

Lemma 3.9 (Weyl’s inequalities). For an n × n matrix M let λ1 (M) ≥ λ2 (M) ≥ · · · ≥
λn (M) denote its eigenvalues. If A and C are n× n symmetric matrices then

λj (A+ C) ≤ λi (A) + λj−i+1 (C) if i ≤ j,

λj (A+ C) ≥ λi (A) + λj−i+n (C) if i ≥ j.

We use Weyl’s inequality for A = diag (p) and C = −ppT . The eigenvalues of A are
{p (π)}π∈Sm

, all of which are no less than δ. Since C has rank 1, all its eigenvalues but one are

zero, and the single nonzero eigenvalue is λm! (C) = −pT p. Since Σ = diag (p)−ppT = A+C,
Weyl’s inequality tells us that

λm!−1 (Σ) ≥ λm! (diag (p)) + λm!−1

(
−ppT

)
≥ δ + 0 = δ.

This implies that we have a lower bound of Ω (
√
n) for the size of the coalition needed in

order to change the outcome of the election for hyperplane rules. As mentioned before, most
commonly occurring SCFs are in this class of rules: see Appendix B for many examples.

3.2.1 “Almost” Hyperplane Rules

Furthermore, the Gaussian limiting setting above is not sensitive to small changes to the
voting rule for finite n. Consequently, for SCFs that are “almost” hyperplane rules (in a
sense we make precise below), the same conclusion holds: a coalition of size Ω (

√
n) is needed

in order to be able to change the outcome of the election with non-negligible probability.
In particular, the same result holds for SCFs with arbitrary tie-breaking rules for ranking
profiles which lie on one of the hyperplanes (e.g., the tie-breaking rule can depend on the
number of voters n).

Definition 9 (“Almost” hyperplane rules). Fix a finite set of affine hyperplanes of the
simplex ∆m!: H1, . . . ,H`. These partition the simplex into finitely many regions. Let F :
∆m! → [m] be a function which is constant on each such region, and let B denote the
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induced boundary. Then the sequence of SCFs {fn}n≥1, fn : Sn
m → [m], is called an

“almost” hyperplane rule if for every σn such that x (σn) /∈ B+o(1/
√
n), we have

fn (σ
n) = F (x (σn)) .

This SCF is called an “almost” hyperplane rule induced by the affine hyperplanes H1, . . . , H`

and the function F .

Lemma 3.10. Suppose the sequence of SCFs {fn}n≥1, fn : Sn
m → [m], is an “almost”

hyperplane rule defined by ` hyperplanes. Then in the Gaussian limiting setting the boundary
B̃ is contained in the union of ˜̀ hyperplanes of Rm! |H0, where

˜̀≤ `.

Proof. For finite n, the induced boundary of fn in the simplex ∆m! is contained inB+o(1/
√
n),

by definition. Since in the Gaussian limit we scale by
√
n, the blowup by o (1/

√
n) of the

boundary B disappears in the limit, and hence we are back to the situation of Lemma 3.6.
Consequently, the affine hyperplanes corresponding to our “almost” hyperplane rule either
“disappear to infinity” or become hyperplanes of Rm! |H0 .

Corollary 3.11. Corollary 3.7 and Claim 3.8 hold for “almost” hyperplane rules as well.

3.3 Smoothness of the Phase Transition

In this final subsection our goal is to show Parts 1 and 3 of Theorem 1.2. The existence
of the limits in Part 1 follows immediately from the Gaussian limit described above; we do
not detail this, but rather give formulas for these limiting probabilities. These then imply
the properties described in Part 3 of the theorem.

In the following let the hyperplane rule be given by affine hyperplanes H1, . . . , H` of
∆m! and the function F : ∆m! → [m]; in the limiting setting denote by H̃1, . . . , H̃˜̀ the

corresponding hyperplanes of Rm! |H0 and denote by F̃ : Rm! |H0 → [m] the corresponding
function.

3.3.1 The Quantities q and q

For x̃ ∈ Rm! |H0 define

α (x̃) := inf
ỹ:F̃ (ỹ)6=F̃ (x̃)

d1 (x̃, ỹ) , β (x̃) := max
a∈[m]

inf
ỹ:F̃ (ỹ)=a

d1 (x̃, ỹ) .

From the previous subsection it is then immediate that we can write

q (c) = µ
(
X̃ : α

(
X̃
)
≤ 2c

)
,

q (c) = µ
(
X̃ : β

(
X̃
)
≤ 2c

)
.

It is important to note that the boundary B̃ is contained in the union of finitely many
hyperplanes, H̃1, . . . , H̃˜̀, and thus the regions where F̃ is constant are convex cones which
are the intersection of finitely many halfspaces. Consequently α (x̃) is either d1 (x̃, 0), where

0 denotes the origin of Rm!, or it is d1

(
x̃, H̃j

)
for some 1 ≤ j ≤ ˜̀, where d1

(
x̃, H̃j

)
=
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inf ỹ∈H̃j
d1 (x̃, ỹ). If we scale x̃ by some positive constant λ, then the distance from the origin

and from every hyperplane scales as well (i.e., d1 (λx̃, 0) = λd1 (x̃, 0) and d1

(
λx̃, H̃j

)
=

λd1

(
x̃, H̃j

)
), and thus for every λ > 0, we have α (λx̃) = λα (x̃). Consequently, if we

write x̃ = ‖x̃‖2 s̃, where s̃ ∈ Sm!−1, and Sm!−1 denotes the (m!− 1)-sphere (not to be
confused with Sn

m, the set of ranking profiles on n voters and m candidates), then we have
α (x̃) = ‖x̃‖2 α (s̃).

The same scaling property holds for β as well, and hence we have

q (c) = µ
(
X̃ :

∥∥∥X̃∥∥∥
2
α
(
S̃
)
≤ 2c

)
, (3)

q (c) = µ
(
X̃ :

∥∥∥X̃∥∥∥
2
β
(
S̃
)
≤ 2c

)
. (4)

Recall that our condition that for every a ∈ [m], P (f (σ) = a) ≥ ε, implies that for every
η > 0 and for every a ∈ [m] there exists x̃ ∈ Rm! |H0 such that ‖x̃‖2 ≤ η and F̃ (x̃) = a.
Consequently for every x̃ ∈ Rm! |H0 we must have α (x̃) ≤ d1 (x̃, 0) and β (x̃) ≤ d1 (x̃, 0). In
particular, for s̃ ∈ Sm!−1 we have d1 (s̃, 0) ≤

√
m!d2 (s̃, 0) =

√
m! and so α (s̃) , β (s̃) ≤

√
m!.

This immediately implies that for every c > 0 we have

q (c) ≥ µ

(
X̃ :

∥∥∥X̃∥∥∥
2
≤ 2c√

m!

)
> 0.

To show that q (c) < 1, note that since the boundary is contained in the union of finitely
many hyperplanes, there exists s̃∗ ∈ Sm!−1 such that α (s̃∗) > 0. By continuity of α, there
exists a neighborhood U ⊆ Sm!−1 of s̃∗ such that for every s̃ ∈ U , α (s̃) ≥ α (s̃∗) /2. For
any x̃ such that x̃/ ‖x̃‖2 ∈ U and ‖x̃‖2 >

4c
α(s̃∗) , we have

α (x̃) = ‖x̃‖2 α (x̃/ ‖x̃‖2) >
4c

α (s̃∗)

α (s̃∗)

2
= 2c.

So consequently

q (c) ≤ 1− µ

(
X̃ : X̃/

∥∥∥X̃∥∥∥
2
∈ U,

∥∥∥X̃∥∥∥
2
>

4c

α (s̃∗)

)
< 1.

Finally, the fact that q (c) and q (c) are continuously differentiable follows from the
formulas (3) and (4), since q (c) and q (c) are both written as the Gaussian volume of a

subset of Rm! |H0 , and in both cases this subset grows continuously as c increases. The
derivative of both q (c) and q (c) is bounded at zero (by Corollary 3.7 and Claim 3.8), while
as c→ ∞ the derivative approaches zero, and since the derivative is continuous, it must be
bounded by a constant for the whole half-line.

3.3.2 The Quantities r and r

In the previous setup when the coalition of size c
√
n was not specified, the ranking profile

could be changed arbitrarily within a Hamming ball of radius c
√
n. On the probability

simplex ∆m! this corresponded to an L1 ball of radius 2c/
√
n, and in the rescaled limiting
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setting it corresponded to an L1 ball in Rm! |H0 of radius 2c. When the coalition of size
c
√
n is specified, things are slightly different. In particular, when we look at the probability

distribution on the probability simplex ∆m! induced by the distribution on ranking profiles
(or, in the limiting setting, the Gaussian distribution on Rm! |H0), then we have lost track of
the votes of any specific coalition. Nonetheless, the Gaussian limiting setting still provides
formulas for the limiting probabilities r (c) and r (c).

We can first draw a random ranking profile for the other n − c
√
n voters not in the

coalition, σn−c
√
n, and then the voters in the coalition can set their votes arbitrarily. The

question is, how can the coalition affect the outcome of the vote? In particular, (a) can
they change the outcome of the election, and (b) can they elect any candidate?

The ranking profile σn−c
√
n corresponds to a point x

(
σn−c

√
n
)
on the probability sim-

plex ∆m!, and by setting their votes the coalition can move this point on the probability

simplex in some neighborhood of x
(
σn−c

√
n
)
. We omit the calculation for finite n and only

present the result in the limiting setting.
Suppose the limiting ranking profile of the voters other than the coalition corresponds

to the point x̃ ∈ Rm! |H0 . Then the set of points the coalition can reach is the following:

Rc (x̃) :=
{
ỹ ∈ Rm! |H0 : ∀π ∈ Sm : ỹπ − x̃π + cp (π) ≥ 0

}
.

We can then define

ϕ (x̃) := inf
{
γ : ∃ỹ ∈ Rγ (x̃) such that F̃ (ỹ) 6= F̃ (x̃)

}
,

ψ (x̃) := inf
{
γ : ∀a ∈ [m]∃ỹ ∈ Rγ (x̃) such that F̃ (ỹ) = a

}
,

and it follows immediately that we can then write

r (c) = µ
(
X̃ : ϕ

(
X̃
)
≤ c
)
,

r (c) = µ
(
X̃ : ψ

(
X̃
)
≤ c
)
.

In the same way as in Section 3.3.1 one can argue that ϕ and ψ scale: if λ > 0 then
ϕ (λx̃) = λϕ (x̃) and ψ (λx̃) = λψ (x̃). Hence we have

r (c) = µ
(
X̃ :

∥∥∥X̃∥∥∥
2
ϕ
(
S̃
)
≤ c
)
, (5)

r (c) = µ
(
X̃ :

∥∥∥X̃∥∥∥
2
ψ
(
S̃
)
≤ c
)
. (6)

For every 0 < c <∞ we have r (c) ≤ q (c) < 1 (using Section 3.3.1). Let us now show that
also r (c) > 0. We claim that for all s̃ ∈ Sm!−1|H0 , ψ (s̃) ≤ 2

δ . This follows from the fact
that if s̃ ∈ Sm!−1|H0 then Sm!−1|H0 ⊆ R 2

δ
(s̃), which is true because if ỹ ∈ Sm!−1|H0 then

for all π ∈ Sm, ỹπ − s̃π + 2
δp (π) ≥ −1− 1 + 2

δ δ = 0. Thus we have

r (c) ≥ µ

(
X̃ :

∥∥∥X̃∥∥∥
2
≤ cδ

2

)
> 0

as claimed.
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Finally, the fact that r (c) and r (c) are continuously differentiable follows from the
formulas (5) and (6) using an argument given above: r (c) and r (c) are written as the
Gaussian volume of subsets of Rm! |H0 , and these subsets grow continuously as c increases.
The derivative of both r (c) and r (c) is bounded at zero (by Corollary 3.7 and Claim 3.8),
while as c → ∞ the derivative approaches zero, and since the derivative is continuous, it
must be bounded by a constant for the whole half-line.
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Appendix A. Decomposing Rd as the Disjoint Union of Finitely Many
Convex Cones: Only Via Hyperplanes

In order for the paper to be self-contained, we reproduce here the main definitions and
results of Kemperman (1986) that make precise the claim used in the proof of Lemma 3.1
that the only way to decompose Qd

≥0 \ {0} into the disjoint union of finitely many Q-convex
cones is via hyperplanes. Kemperman’s paper deals with convex sets in general, but here
we summarize the results about convex cones that are relevant to us. Kemperman’s results
pertain to finite dimensional linear spaces and we will state them in this form; in the end
we show how results for Rd

≥0 follow immediately from these, and as a consequence we also
obtain the claim used in the proof of Lemma 3.1.

Let us start with the main definitions. In the following, all linear spaces are over the
reals and are finite dimensional. Let X be a linear space. A convex cone is a subset K ⊆ X
such that x, y ∈ K and λ > 0 imply x + y ∈ K and λx ∈ K. (We do not require that
0 ∈ K.) For a set A ⊆ X, denote its affine hull by aff (A), its convex hull by cvx (A), and
its closure by cl (A). Note that if K ⊆ X is a convex cone, then aff (K) is a linear subspace
of X.

We define two special types of convex cones: basic convex cones and elementary convex
cones.

Definition 10 (Basic convex cone). Let K be a convex cone in a finite dimensional linear
space X. We say that K is a basic convex cone (in X) if K is a member K = K0 of some
partition

X = K0∪̇K1∪̇ . . . ∪̇Kr

of X into finitely many disjoint convex cones {Ki}ri=0.

Note that any linear subspace Y of X is a basic convex cone, from which it immediately
follows that K is a basic convex cone in X if and only if it is a basic convex cone in aff (K).

In order to define elementary convex cones, we need a few more definitions.

Definition 11 (Open polyhedral convex cone). Let K be a convex cone in a finite dimen-
sional linear space X. We say that K is an open polyhedral convex cone relative to X if K
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can be expressed as the intersection of finitely many open halfspaces H1, . . . , H` of X, each
of which has the origin on its boundary. The whole linear space X is an open polyhedral
convex cone with ` = 0.

Definition 12 (Relatively open polyhedral convex cone). Let K be a convex cone in a
finite dimensional linear space X. Then K is a relatively open polyhedral convex cone if
either K = ∅ or K is an open polyhedral convex cone relative to aff (K).

Definition 13 (Elementary convex cone). Let K be a convex cone in a finite dimensional
linear space X. We say that K is an elementary convex cone if K can be represented as a
disjoint union of finitely many relatively open polyhedral convex cones.

The main result of Kemperman concerning convex cones is the following (Kemperman,
1986, Thm. 2).

Theorem A.1. Let K be a convex cone in Rd. Then K is a basic convex cone if and only
if it is an elementary convex cone.

In Lemma 3.1 we only use the “only if” direction, and we thus leave the proof of the
“if” direction as an exercise for the reader.

Proof of “only if” direction. Let X be a finite dimensional linear space and let K be a basic
convex cone in X of dimension d = dim (K) = dim (Y ), where Y = aff (K). We prove by
induction on d the following:

(i) The relative interior of K, denoted by K0, is a relatively open polyhedral convex cone.

(ii) If K0 6= Y , then denote by F1, . . . , F` the (d− 1)-dimensional hyperplanes in Y cor-
responding to the finitely many faces of the polyhedron cl (K) = cl

(
K0
)
. Then the

convex cones Fi ∩K, i = 1, . . . , `, are elementary convex cones of dimension at most
d− 1 (but they need not be disjoint).

(iii) The convex cone K is also an elementary convex cone.

If K = ∅, then properties (i) - (iii) hold. If d = 0, then necessarily K = {0}, since K is
a convex cone, and again K satisfies properties (i) - (iii) above.

So we may assume that d ≥ 1 and that each basic convex cone of dimension at most
d − 1 satisfies properties (i) - (iii) above. Since K is a basic convex cone, there exists a
partition

Y = K0∪̇K1∪̇ . . . ∪̇Kr (7)

of Y into finitely many disjoint convex cones {Kj}rj=0, with K0 = K. We may assume that

r ≥ 0 is minimal, and hence the Kj are non-empty. Note that K0 is also non-empty since
dim (K) = dim (Y ).

If r = 0 then K = K0 = Y and the properties (i) - (iii) above are immediately satisfied,
so we may assume that r ≥ 1. For j = 1, . . . , r, let Hj be a hyperplane in Y which separates
the convex cone K = K0 with non-empty interior K0 from the non-empty convex cone Kj .
(Such hyperplanes exist by the hyperplane separation theorem, and, moreover, each such
hyperplane goes through the origin, because each Kj contains at least one point from every
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open ball around the origin, since each Kj is a cone.) Let H0
j be the associated open half

space in Y which contains the interior K0 of K. Let

L0 = H0
1 ∩ · · · ∩H0

r .

Then L0 is a polyhedral convex cone, which is open relative to Y , and contains the interior
K0 of K.

We claim that L0 = K0. It is enough to show that L0 ⊆ K, because then L0 ⊆ K0

follows from the definition of K0. Suppose on the contrary that there exists x ∈ L0 such
that x /∈ K. Then from the partition (7) there must exist an index 1 ≤ j ≤ r with x ∈ Kj .
This implies that x /∈ H0

j and thus x /∈ L0, which is a contradiction. This proves (i).
Now let us show (ii). By (7), we can write the linear space Fi as the disjoint union of

the convex cones Fi ∩Kj , j = 0, . . . , r, and thus Fi ∩K is a basic convex cone and hence,
by induction, an elementary convex cone.

Finally, let us show that K is an elementary convex cone. Since K0 is a polyhedral
convex cone which is open relative to Y , it only remains to show that K \K0 can be written
as a finite disjoint union of relatively open polyhedral convex cones. By (ii), we can write
K \K0 as the finite union of elementary convex cones:

K \K0 = ∪`
i=1 (Fi ∩K) ,

so what remains is to show that we can write this as a finite disjoint union of relatively
open polyhedral convex cones. We may assume w.l.o.g. that Fi ∩K 6= ∅ for all i and that
(Fi ∩K) * (Fj ∩K) for all i 6= j (otherwise we can leave out Fi ∩K from the union).

We claim that then for every i,

rel int (Fi ∩K) ⊆ (Fi ∩K) \
⋃
j 6=i

(Fj ∩ Fi ∩K) , (8)

from which it immediately follows that rel int (Fi ∩K) ∩ rel int (Fj ∩K) = ∅ for i 6= j. To
show (8), let the two open halfspaces on either side of the hyperplane Fj be denoted by
F+
j and F−

j . W.l.o.g. assume that K ∩ F−
j = ∅. Since (Fi ∩K) * (Fj ∩K), we must have

(Fi ∩K)∩F+
j 6= ∅. Let x ∈ (Fi ∩K)∩F+

j and let y ∈ Fj ∩Fi ∩K. Since Fi ∩K is convex,

the interval from x to y is contained in Fi ∩K, but because (Fi ∩K) ∩ F−
j = ∅, no points

on this line past the point y can be in Fi ∩K; hence y /∈ rel int (Fi ∩K).
Since Fi ∩ K is a basic convex cone, rel int (Fi ∩K) is a relatively open polyhedral

convex cone by induction. If Fi ∩K = aff (Fi ∩K) then rel int (Fi ∩K) = Fi ∩K. If not,
then denote by Fi,1, . . . , Fi,`i the hyperplanes in aff (Fi ∩K) corresponding to the finitely
many faces of the polyhedron cl (Fi ∩K). By induction, the convex cones Fi,j ∩ Fi ∩ K,
j = 1, . . . , `i, are elementary convex cones, and we can write

K \K0 =
(
∪̇`
i=1 rel int (Fi ∩K)

)⋃̇(
∪`
i=1 ∪

`i
j=1 (Fi,j ∩ Fi ∩K)

)
.

What remains to be shown is that ∪`
i=1∪

`i
j=1(Fi,j ∩ Fi ∩K) can be written as a finite disjoint

union of relatively open polyhedral convex cones; this follows by iterating the previous
argument.
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Let us now show that Rd
≥0 is a basic convex cone in Rd. For i = 1, . . . , d, define the

closed halfspace H≥0
i =

{
x ∈ Rd : xi ≥ 0

}
and its complement H<0

i =
{
x ∈ Rd : xi < 0

}
,

and from these define the convex cones

Ki = H≥0
1 ∩ · · · ∩H≥0

i−1 ∩H
<0
i , i = 1, . . . , d.

Then we can write Rd as the disjoint union of the convex cones Rd
≥0 andK1, . . . ,Kd, showing

that indeed Rd
≥0 is a basic convex cone. This implies that if we can write Rd

≥0 as the disjoint
union of the convex cones C1, . . . , Cr, then each Ci is a basic convex cone, and hence, by
Theorem A.1, an elementary convex cone.

Now let us turn to the claim in the proof of Lemma 3.1. In Lemma 3.1, we writeQm!
≥0 \ {0}

as the disjoint union of finitely many Q-convex cones: Qm!
≥0 \ {0} = C0∪̇C1∪̇ . . . ∪̇Cr. For

i = 0, . . . , r, let C̃i = cvx (Ci). It is known (see, e.g., Young, 1975) that Ci = Qm! ∩C̃i. The
C̃i are therefore disjoint convex cones which satisfy

C̃0∪̇C̃1∪̇ . . . ∪̇C̃r ⊆ Rm!
≥0 (9)

and

cl
(
C̃0

)
∪ cl

(
C̃1

)
∪ · · · ∪ cl

(
C̃r

)
= Rm!

≥0 . (10)

Our goal is to show that each C̃i is an elementary convex cone. Conditions (10) and (9)
are very similar to the definition of a basic convex cone; in this spirit let us introduce the
following definition.

Definition 14 (Basic convex cone up to closure). Let K0 be a convex cone in a finite
dimensional linear space X. We say that K0 is a basic convex cone up to closure (in X) if
there exist disjoint convex cones K1, . . . ,Kr such that

K0∪̇K1∪̇ . . . ∪̇Kr ⊆ X

and

cl (K0) ∪ cl (K1) ∪ · · · ∪ cl (Kr) = X.

Since Rd
≥0 is a basic convex cone, the C̃i above are basic convex cones up to closure.

In fact, every basic convex cone up to closure is an elementary convex cone; the proof is
exactly the same as the one shown above for the “only if” direction of Theorem A.1, one just
needs to replace “basic convex cone” with “basic convex cone up to closure” everywhere in
the proof, and make the appropriate changes. Moreover, the other direction of Theorem A.1
implies that actually every basic convex cone up to closure is a basic convex cone.

Hence the C̃i are elementary convex cones, which is what we need in Lemma 3.1.

Appendix B. Most Voting Rules are Hyperplane Rules: Examples

In the following we show that all positional scoring rules, instant-runoff voting, Coombs’
method, contingent vote, the Kemény-Young method, Bucklin voting, Nanson’s method,
Baldwin’s method, and Copeland’s method are all hyperplane rules.
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• Positional scoring rules. Let w ∈ Rm be a weight vector. Given a ranking profile
vector σ, the (normalized) score of candidate a ∈ [m] is sa = 1

n

∑n
i=1w

(
σ−1
i (a)

)
. The

positional scoring rule associated to the weight vector w elects the candidate who has
the highest score. (In case of a tie, there is some tie-breaking rule, but we do not
care about this here.) We denote such a SCF on n voters by fwn . Examples include
plurality (with weight vector w = (1, 0, 0, . . . , 0)), Borda count (with weight vector
w = (m− 1,m− 2, . . . , 0)) and veto (with weight vector w = (1, 1, . . . , 1, 0)).

To a sequence of SCFs {fwn }n≥1 we can associate a function Fw : ∆m! → [m] in the

following way. For a candidate a ∈ [m] and x ∈ ∆m!, define the (normalized) score
sa (x) =

∑
π∈Sm

xπw
(
π−1 (a)

)
, and let

Fw (x) := argmax
a∈[m]

sa (x) ,

if this argmax is unique, and if it is not unique, then there is some tie-breaking rule.
This construction guarantees that fwn = Fw|Dn . For candidates a 6= b, define

Ha,b :=
{
x ∈ ∆m! : sa (x) = sb (x)

}
,

which is an affine hyperplane of the probability simplex ∆m!. Clearly the boundary
Bw is contained in the union of

(
m
2

)
such affine hyperplanes:

Bw ⊆
⋃

a6=b∈[m]

Ha,b.

• Instant-runoff voting. If a candidate receives absolute majority of first preference
votes, then that candidate wins. If no candidate receives an absolute majority, then
the candidate with fewest top votes is eliminated. In the next round the votes are
counted again, with each ballot counted as one vote for the advancing candidate who
is ranked highest on that ballot. This is repeated until the winning candidate receives
a majority of the vote against the remaining candidates.

The boundary corresponds to two kinds of situations: either (1) there is a tie at the
top at the end, when only two candidates remain; or (2) there is a tie for eliminating a
candidate at the end of one of the rounds. Technically situation (1) is also contained
in situation (2), since at the very end one can view choosing a winner as eliminating
the second placed candidate. One can see that if candidates a and b are tied for
elimination after candidates C ⊆ [m] \ {a, b} (where C = ∅ is allowed) have been
eliminated, then necessarily∑

C′⊆C

∑
{π(1),...,π(|C′|)}=C′,

π(|C′|+1)=a

xπ =
∑
C′⊆C

∑
{π(1),...,π(|C′|)}=C′,

π(|C′|+1)=b

xπ. (11)

Consequently, denoting by sa,C (x) the quantity on the left hand side of (11), the
boundary B is contained in the union of at most m22m affine hyperplanes:

B ⊆
⋃
a 6=b

⋃
C⊆[m]\{a,b}

{
x ∈ ∆m! : sa,C (x) = sb,C (x)

}
.
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• Coombs’ method. This is similar to IRV, but the elimination rule is different. If
a candidate receives absolute majority of first preference votes, then that candidate
wins. If no candidate receives an absolute majority, then the candidate who is ranked
last by the most voters is eliminated. In the next round the votes are counted again,
with each ballot counted as one vote for the advancing candidate who is ranked highest
on that ballot. This is repeated until the winning candidate receives a majority of the
vote against the remaining candidates.

The boundary corresponds to two kinds of situations: either (1) there is a tie at the
top at the end, when only two candidates remain; or (2) there is a tie for eliminating a
candidate at the end of one of the rounds. Technically situation (1) is also contained
in situation (2), since at the very end one can view choosing a winner as eliminating
the second placed candidate. One can see that if candidates a and b are tied for
elimination after candidates C ⊆ [m] \ {a, b} (where C = ∅ is allowed) have been
eliminated, then necessarily∑

C′⊆C

∑
{π(m),...,π(m−|C′|+1)}=C′,

π(m−|C′|)=a

xπ =
∑
C′⊆C

∑
{π(m),...,π(m−|C′|+1)}=C′,

π(m−|C′|)=b

xπ. (12)

Consequently, denoting by sa,C (x) the quantity on the left hand side of (12), the
boundary B is contained in the union of at most m22m affine hyperplanes:

B ⊆
⋃
a6=b

⋃
C⊆[m]\{a,b}

{
x ∈ ∆m! : sa,C (x) = sb,C (x)

}
.

• Contingent vote. This is also similar to IRV, except here all but two candidates
get eliminated after the first round. If a candidate receives absolute majority of first
preference votes, then he/she wins. If no candidate receives an absolute majority, then
all but the top two leading candidates are eliminated and there is a second count, where
the votes of those who supported an eliminated candidate are redistributed among
the two remaining candidates. The candidate who then achieves absolute majority
wins.

Here the boundary B corresponds to two kinds of situations: either (1) there are
two distinct top candidates, and when the votes of the voters who voted for other
candidates are redistributed, then the two top candidates are in a dead heat; or (2)
there are two or more candidates who receive an equal number of votes in the first
round. Both of these situations can be described as subsets of affine hyperplanes, and
so B is contained in the union of at most m (m− 1) affine hyperplanes:

B ⊆
⋃
a 6=b

x ∈ ∆m! :
∑

π:π(1)=a

xπ +
∑

π:π(1)/∈{a,b},a
π
>b

xπ =
∑

π:π(1)=b

xπ +
∑

π:π(1)/∈{a,b},b
π
>a

xπ


∪
⋃
a 6=b

x ∈ ∆m! :
∑

π:π(1)=a

xπ =
∑

π:π(1)=b

xπ

 .
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• Kemény-Young method. Denote by K the Kendall tau distance, which is a metric
on permutations which counts the number of pairwise disagreements between the two
permutations, i.e.,

K (τ1, τ2) =
∑
{a,b}

1 [a and b are in the opposite order in τ1 and τ2] ,

where the sum is over all unordered pairs of distinct candidates. Given a ranking
profile σn, the Kemény-Young method selects the ranking which minimizes the sum
of Kendall tau distances from the votes:

τ = argmin

n∑
i=1

K (σi, τ) ,

and then the winner of the election is declared to be τ (1). For us it will be convenient
to write τ as

τ = argmin
∑
π

xπ (σ
n)K (π, τ) .

Here if we are on the boundary B then there must exist two rankings τ1 and τ2 such
that τ1 (1) 6= τ2 (1) and

∑
π xπK (π, τ1) =

∑
π xπK (π, τ2). Thus B is contained in the

union of at most (m!)2 affine hyperplanes:

B ⊆
⋃

τ1 6=τ2

{
x ∈ ∆m! :

∑
π

xπK (π, τ1) =
∑
π

xπK (π, τ2)

}
.

• Bucklin voting. First every candidate gets a point from all the voters who ranked
them at the top. If there is a candidate who has a majority (i.e., more than n/2
points), then that candidate wins. If not, then every candidate gets a point from
all the voters who ranked them second. If there is a candidate who has more than
n/2 points after this, then the candidate with the most points wins (there might be
multiple candidates with more than n/2 points after a given round). This process is
iterated until there is a candidate with more than n/2 points.

Here a point on the boundary B corresponds to a situation where some pair of can-
didates have the same number of points after some number of rounds. Therefore B is
contained in the union of at most m2 (m− 1) /2 affine hyperplanes:

B ⊆
⋃
a6=b

m⋃
k=1

x ∈ ∆m! :
k∑

i=1

∑
π:π(i)=a

xπ =
k∑

i=1

∑
π:π(i)=b

xπ

 .

• Nanson’s method. This is Borda count combined with a variation of the instant-
runoff voting procedure. First, the Borda scores of all candidates are computed, and
then those candidates with Borda score no greater than the average Borda score are
eliminated. Then the Borda scores of each remaining candidate are recomputed, as
if the eliminated candidates were not on the ballot. This is repeated until there is a
final candidate left.
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The boundary corresponds to situations when a candidate’s Borda score exactly equals
the average score after some candidates have been eliminated. For C ⊆ [m], denote by
sa,C (x) the score of candidate a after exactly the candidates in C have been eliminated
(sa,C (x) is a linear function of {xπ}π∈Sm

), and denote by s̄C (x) the average score of
remaining candidates after exactly the candidates in C have been eliminated. The
boundary B is contained in the union of at most m2m affine hyperplanes:

B ⊆
⋃

a∈[m]

⋃
C⊆[m]\{a}

{
x ∈ ∆m! : sa,C (x) = s̄C (x)

}
.

• Baldwin’s method. This is essentially Borda count combined with the instant-
runoff voting procedure. First, the Borda scores of all candidates are computed, and
then the candidate with the lowest score is eliminated. Then the Borda scores of each
remaining candidate are recomputed, as if the eliminated candidate were not on the
ballot. This is repeated until there is a final candidate left.

The boundary corresponds to ties for eliminating a candidate at the end of one of the
rounds. Borrow the notation sa,C (x) from the previous example. The boundary B is
thus contained in the union of at most m22m affine hyperplanes:

B ⊆
⋃
a 6=b

⋃
C⊆[m]\{a,b}

{
x ∈ ∆m! : sa,C (x) = sb,C (x)

}
.

• Copeland’s method. This is a pairwise aggregation method: every candidate gets
1 point for each other candidate it beats in a pairwise majority election, and 1/2 a
point for each candidate it ties with in a pairwise majority election. The winner is
the candidate who receives the most points. This method corresponds to cutting the
simplex ∆m! up into finitely many regions via

(
m
2

)
affine hyperplanes, and in each

region the winner is the candidate with the most points.

While in the previous examples tie-breaking rules were not an issue, here it does
become important. We do not care about tie-breaking rules when we are on an
affine hyperplane where two candidates tie each other in a pairwise majority election.
However, there are open regions in the intersection of halfspaces defined by the affine
hyperplanes where candidates are tied at the top with having the same scores. In
this case, in order for Copeland to be a hyperplane rule, we need to break ties in
favor of the same candidate for the whole region. (This is also how ties are broken for
Copeland’s method in Xia & Conitzer, 2008b.)

Using this tie-breaking rule Copeland’s method is indeed a hyperplane rule, since the
boundary is contained in the union of at most

(
m
2

)
affine hyperplanes:

B ⊆
⋃
a 6=b

x ∈ ∆m! :
∑
π:a

π
>b

xπ =
∑
π:b

π
>a

xπ

 .

948



A Smooth Transition from Powerlessness to Absolute Power

References

Achlioptas, D. (1999). Threshold phenomena in random graph colouring and satisfiability.
Ph.D. thesis, Department of Computer Science, University of Toronto.

Achlioptas, D., Naor, A., & Peres, Y. (2005). Rigorous location of phase transitions in hard
optimization problems. Nature, 435 (7043), 759–764.

Bartholdi III, J., Tovey, C., & Trick, M. (1989). The Computational Difficulty of Manipu-
lating an Election. Social Choice and Welfare, 6 (3), 227–241.

Betzler, N., Niedermeier, R., & Woeginger, G. J. (2011). Unweighted coalitional manipula-
tion under the Borda rule is NP-hard. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI), pp. 55–60.

Brandt, F. (2009). Some remarks on Dodgson’s voting rule. Mathematical Logic Quarterly,
55 (4), 460–463.

Caragiannis, I., & Procaccia, A. D. (2011). Voting almost maximizes social welfare despite
limited communication. Artificial Intelligence, 175 (9–10), 1655–1671.

Chamberlain, G., & Rothschild, M. (1981). A note on the probability of casting a decisive
vote. Journal of Economic Theory, 25 (1), 152–162.

Cheeseman, P., Kanefsky, B., & Taylor, W. (1991). Where the really hard problems are.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 331–337.

Conitzer, V., & Sandholm, T. (2006). Nonexistence of Voting Rules That Are Usually
Hard to Manipulate. In Proceedings of the 21st National Conference on Artificial
Intelligence, Vol. 21, pp. 627–634.

Conitzer, V., Sandholm, T., & Lang, J. (2007). When are elections with few candidates
hard to manipulate?. Journal of the ACM, 54 (3), 1–33.

Dobzinski, S., & Procaccia, A. (2008). Frequent Manipulability of Elections: The Case
of Two Voters. In Proceedings of the 4th International Workshop on Internet and
Network Economics, pp. 653–664. Springer.

Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2009). Llull and
Copeland Voting Computationally Resist Bribery and Constructive Control. Jour-
nal of Artificial Intelligence Research, 35, 275–341.

Faliszewski, P., & Procaccia, A. (2010). AI’s War on Manipulation: Are We Winning?. AI
Magazine, 31 (4), 53–64.

Friedgut, E., Kalai, G., Keller, N., & Nisan, N. (2011). A Quantitative Version of the
Gibbard-Satterthwaite Theorem for Three Alternatives. SIAM J. Comput., 40 (3),
934–952.

Friedgut, E., Kalai, G., & Nisan, N. (2008). Elections can be manipulated often. In Pro-
ceedings of the 49th Annual Symposium on Foundations of Computer Science, pp.
243–249. IEEE.

949



Mossel, Procaccia, & Rácz
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