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Recently, quantitative versions of the Gibbard-Satterthwaite theorem were proven for k=3
alternatives by Friedgut, Kalai, Keller and Nisan and for neutral functions on k ≥ 4
alternatives by Isaksson, Kindler and Mossel.

We prove a quantitative version of the Gibbard-Satterthwaite theorem for general
social choice functions for any number k ≥ 3 of alternatives. In particular we show that
for a social choice function f on k≥ 3 alternatives and n voters, which is ε-far from the
family of nonmanipulable functions, a uniformly chosen voter profile is manipulable with
probability at least inverse polynomial in n, k, and ε−1.

Ours is a unified proof which in particular covers all previous cases established before.
The proof crucially uses reverse hypercontractivity in addition to several ideas from the
two previous proofs. Much of the work is devoted to understanding functions of a single
voter, and in particular we also prove a quantitative Gibbard-Satterthwaite theorem for
one voter.

1. Introduction

One of the main goals in social choice theory is to come up with “good”
voting systems, which satisfy a few natural requirements. This problem is
increasingly relevant in the area of artificial intelligence and computer sci-
ence as well, where virtual elections are now an established tool in preference
aggregation (see the survey by Faliszewski and Procaccia [7]). Many of the
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results in the study of social choice are negative: it is impossible to design
a voting system that satisfies a few desired properties all at once. The first
realization of an apparent problem is due to Condorcet, who, at the end of
the 18th century, noticed the following paradox: when ranking three candi-
dates, a, b, and c, it may happen that a majority of voters prefer a over b, a
majority prefers b over c, and a majority prefers c over a, thus producing an
“irrational” circular ranking of the candidates. Arrow’s impossibility theo-
rem [1,2] showed that this paradox holds under very natural assumptions,
thus marking the basis of modern social choice theory.

A naturally desirable property of a voting system is strategyproofness
(a.k.a. nonmanipulability): no voter should benefit from voting strategically,
i.e., voting not according to her true preferences. However, Gibbard [10] and
Satterthwaite [21] showed that no reasonable voting system can be strate-
gyproof. Before stating their result, let us specify the problem more formally.

We consider n voters electing a winner among k alternatives. The voters
specify their opinion by ranking the alternatives, and the winner is deter-
mined according to some predefined social choice function (SCF) f : Snk→ [k]
of all the voters’ rankings, where Sk denotes the set of all possible total or-
derings of the k alternatives. We call a collection of rankings by the voters
a ranking profile. We say that a SCF is manipulable if there exists a ranking
profile where a voter can achieve a more desirable outcome of the election
according to her true preferences by voting in a way that does not reflect
her true preferences (see Definition 1 for a more detailed definition).

The Gibbard-Satterthwaite theorem states that any SCF which is not a
dictatorship (i.e., not a function of a single voter), and which allows at least
three alternatives to be elected, is manipulable. This has contributed to the
realization that it is unlikely to expect truthfulness in voting. Consequently,
there have been many branches of research devoted to understanding the
extent of manipulability of voting systems, and to finding ways of circum-
venting the negative results.

One approach, introduced by Bartholdi, Tovey and Trick [3], suggests
computational complexity as a barrier against manipulation: if it is com-
putationally hard for a voter to manipulate, then she would just tell the
truth (we refer to the survey by Faliszewski and Procaccia [7] for a de-
tailed history of the surrounding literature). This is a worst-case approach,
and while worst-case hardness of manipulation is a desirable property for a
SCF to have, this does not tell us anything about typical instances of the
problem—is it easy or hard to manipulate on average?

A recent line of research with an average-case algorithmic approach has
suggested that manipulation is indeed easy on average; see, e.g., Kelly [14],
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Conitzer and Sandholm [5], and Procaccia and Rosenschein [20] for results
on certain restricted classes of SCFs (see also the survey [7]).

A different approach was taken by Friedgut, Kalai, Keller and Nisan [9,8],
who looked at the fraction of ranking profiles that are manipulable. To put
it differently: assuming each voter votes independently and uniformly at
random (known as the impartial culture assumption in the social choice lit-
erature), what is the probability that a ranking profile is manipulable? Is it
perhaps exponentially small (in the parameters n, k), or is it nonnegligible?
Of course, if the SCF is nonmanipulable then this probability is zero. Simi-
larly, if the SCF is “close” to being nonmanipulable in some sense, then this
probability can be small. We say that a SCF f is ε-far from the family of
nonmanipulable functions, if one must change the outcome of f on at least
an ε-fraction of the ranking profiles in order to transform f into a nonma-
nipulable function. Friedgut et al. conjectured that if k≥3 and the SCF f is
ε-far from the family of nonmanipulable functions, then the probability of a
ranking profile being manipulable is bounded from below by a polynomial
in 1/n, 1/k, and ε. Moreover, they conjectured that a random manipulation
will succeed with nonnegligible probability, suggesting that manipulation by
computational agents in this setting is easy.

Friedgut et al. proved their conjecture in the case of k= 3 alternatives,
showing a lower bound of Cε6/n in the general setting, and C ′ε2/n in the
case when the SCF is neutral (commutes with changes made to the names
of the alternatives), where C,C ′ are constants. Note that this result does
not have any computational consequences, since when there are only k= 3
alternatives, a computational agent may easily try all possible permutations
of the alternatives to find a manipulation (if one exists). Several follow-up
works have since extended this result. First, Xia and Conitzer [22] used
the proof technique of Friedgut et al. to extend their result to a constant
number of alternatives, assuming several additional technical assumptions.
However, this still does not have any computational consequences, since
the result holds only for a constant number of alternatives. Dobzinski and
Procaccia [6] proved the conjecture in the case of two voters under the as-
sumption that the SCF is Pareto optimal. Finally, the latest work is due to
Isaksson, Kindler and Mossel [13], who proved the conjecture in the case of
k≥ 4 alternatives with only the added assumption of neutrality. Moreover,
they showed that a random manipulation which replaces four adjacent alter-
natives in the preference order of the manipulating voter by a random per-
mutation of them succeeds with nonnegligible probability. Since this result is
valid for any number of (k≥4) alternatives, it does have computational con-
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sequences, implying that for neutral SCFs, manipulation by computational
agents is easy on average.

In this paper we remove the neutrality condition and resolve the conjec-
ture of Friedgut et al.: if k ≥ 3 and the SCF f is ε-far from the family of
nonmanipulable functions, then the probability of a ranking profile being
manipulable is bounded from below by a polynomial in 1/n, 1/k, and ε. We
continue by first presenting our results, then discussing their implications,
and finally we conclude this section by commenting on the techniques used
in the proof.

1.1. Basic setup

Recall that our basic setup consists of n voters electing a winner among k
alternatives via a SCF f : Snk → [k]. We now define manipulability in more
detail:

Definition 1 (Manipulation points). Let σ ∈ Snk be a ranking profile.

Write a
σi
>b to denote that alternative a is preferred over b by voter i. A SCF

f : Snk → [k] is manipulable at the ranking profile σ ∈ Snk if there exists a
σ′∈Snk and an i∈ [n] such that σ and σ′ only differ in the ith coordinate and

f(σ′)
σi
> f(σ).

In this case we also say that σ is a manipulation point of f , and that (σ,σ′) is
a manipulation pair for f . We say that f is manipulable if it is manipulable
at some point σ. We also say that σ is an r-manipulation point of f if f has
a manipulation pair (σ,σ′) such that σ′ is obtained from σ by permuting
(at most) r adjacent alternatives in one of the coordinates of σ. (We allow
r>k—any manipulation point is an r-manipulation point for r>k.)

Let M(f) denote the set of manipulation points of the SCF f , and for a
given r, let Mr(f) denote the set of r-manipulation points of f . When the
SCF is obvious from the context, we write simply M and Mr.

Gibbard and Satterthwaite proved the following theorem.

Theorem 1.1 (Gibbard-Satterthwaite [10,21]). Any SCF f : Snk → [k]
which takes at least three values and is not a dictator (i.e., not a function
of only one voter) is manipulable.

This theorem is tight in the sense that monotone SCFs which are dictators
or only have two possible outcomes are indeed nonmanipulable (a function is
non-monotone, and clearly manipulable, if for some ranking profile a voter
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can change the outcome from, say, a to b by moving a ahead of b in her
preference). It is useful to introduce a refined notion of a dictator before
defining the set of nonmanipulable SCFs.

Definition 2 (Dictator on a subset). For a subset of alternativesH⊆ [k],
let topH be the SCF on one voter whose output is always the top ranked
alternative among those in H.

Definition 3 (Nonmanipulable SCFs). We denote by NONMANIP ≡
NONMANIP(n,k) the set of nonmanipulable SCFs, which is the following:

NONMANIP(n, k)

= {f : Snk → [k] | f(σ) = topH(σi) for some i ∈ [n], H ⊆ [k], H 6= ∅}⋃
{f : Snk → [k] | f is a monotone function taking on exactly two values}.

When the parameters n and k are obvious from the context, we omit them.

Another important class of functions, which is larger than NONMANIP, but
which has a simpler description, is the following.

Definition 4. Define, for parameters n and k that remain implicit (when
used the parameters will be obvious from the context):

NONMANIP = {f : Snk → [k] | f only depends on one coordinate

or takes at most two values}.

The notation should be thought of as “closure” rather than “complement”.
We remark that in [13] the set NONMANIP is denoted by NONMANIP—
but these two sets of functions should not be confused.

As discussed previously, our goal is to study manipulability from a quan-
titative viewpoint, and in order to do so we need to define the distance
between SCFs.

Definition 5 (Distance between SCFs). The distance D(f,g) between
two SCFs f,g : Snk → [k] is defined as the fraction of inputs on which they
differ: D(f,g) = P

(
f(σ) 6= g(σ)

)
, where σ ∈ Snk is uniformly selected. For a

class G of SCFs, we write D(f,G)=ming∈GD(f,g).

The concepts of anonymity and neutrality of SCFs will be important to
us, so we define them here.

Definition 6 (Anonymity). A SCF is anonymous if it is invariant under
changes made to the names of the voters. More precisely, a SCF f : Snk→ [k]
is anonymous if for every σ=(σ1, . . . ,σn)∈Snk and every π∈Sn,

f(σ1, . . . , σn) = f
(
σπ(1), . . . , σπ(n)

)
.
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Definition 7 (Neutrality). A SCF is neutral if it commutes with changes
made to the names of the alternatives. More precisely, a SCF f : Snk→ [k] is
neutral if for every σ=(σ1, . . . ,σn)∈Snk and every π∈Sk,

f(π ◦ σ1, . . . , π ◦ σn) = π
(
f(σ)

)
.

1.2. Our main result

Our main result, which resolves the conjecture of Friedgut et al. [9,8], is the
following.

Theorem 1.2. Suppose we have n≥1 voters, k≥3 alternatives, and a SCF
f : Snk→ [k] satisfying D(f,NONMANIP)≥ε. Then

(1) P
(
σ ∈M(f)

)
≥ P

(
σ ∈M4(f)

)
≥ p

(
ε,

1

n
,

1

k

)
for some polynomial p, where σ∈Snk is selected uniformly. In particular, we

show a lower bound of ε15

1039n67k166
.

An immediate consequence is that

P
(
(σ, σ′) is a manipulation pair for f

)
≥ q

(
ε,

1

n
,

1

k

)
for some polynomial q, where σ∈Snk is uniformly selected, and σ′ is obtained
from σ by uniformly selecting a coordinate i∈{1, . . . ,n}, uniformly selecting
j ∈ {1, . . . ,k−3}, and then uniformly randomly permuting the following
four adjacent alternatives in σi: σi (j) ,σi (j+1) ,σi (j+2), and σi (j+3). In
particular, the specific lower bound for P

(
σ ∈M4(f)

)
implies that we can

take q
(
ε, 1
n ,

1
k

)
= ε15

1041n68k167
.

1.3. Discussion

Our results cover all previous cases for which a quantitative Gibbard-
Satterthwaite theorem has been established before. In particular, the main
novelty is that neutrality of the SCF is not assumed, and therefore our results
hold for nonneutral SCFs as well, thereby solving the main open problem of
Friedgut, Kalai, Keller and Nisan [8], and Isaksson, Kindler and Mossel [13].
The main message of our results is that the approach of masking manipula-
tion behind computational hardness cannot hide manipulations completely
even in the nonneutral setting.
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Importance of nonneutrality. While neutrality seems like a very natural
assumption, there are multiple reasons why removing this assumption is
important.

First, it is known that there is a conflict between anonymity and neutral-
ity (recall Definitions 6 and 7). In particular, there are some combinations
of n and k when there exists no SCF which is both anonymous and neutral.

Theorem 1.3. [19, Chapter 2.4.] There exists a SCF on n voters and k
alternatives which is both anonymous and neutral if and only if k cannot be
written as the sum of (non-trivial) divisors of n.

The difficulty comes from rules governing tie-breaking, and since most com-
mon voting rules (plurality, Borda count, etc.) break ties in an anonymous
way, they cannot be neutral as well (or can only be neutral for special val-
ues of n and k). See Moulin [19, Chapter 2.4.] for more on anonymity and
neutrality.

Furthermore, neutrality is not a natural assumption in many settings of
virtual elections, and even in some real-life elections. We refer to [18] for
further motivation.

A quantitative Gibbard-Satterthwaite theorem for one voter.
A major part of the work in proving Theorem 1.2 is devoted to understand-
ing functions of a single voter, essentially proving a quantitative Gibbard-
Satterthwaite theorem for one voter. This can be formulated as follows.

Theorem 1.4. Suppose f : Sk → [k] is a SCF on n = 1 voter and k ≥ 3
alternatives which satisfies D(f,NONMANIP)≥ε. Then

(2) P
(
σ ∈M(f)

)
≥ P

(
σ ∈M3(f)

)
≥ p

(
ε,

1

k

)
,

for some polynomial p, where σ∈Sk is selected uniformly. In particular, we

show a lower bound of ε3

105k16
.

We note that this is a new result, which has not been studied in the
literature before.

Dobzinski and Procaccia [6] proved a quantitative Gibbard-Satterthwaite
theorem for two voters, assuming that the SCF is Pareto optimal, i.e., if all
voters rank alternative a above b, then b is not elected. The assumption of
Pareto optimality is natural in the context of classical social choice, but it
is a very strong assumption in the context of quantitative social choice. For
one, it implies that every alternative is elected with probability at least 1/k2.
Second, for one voter, there exists a unique Pareto optimal SCF, while the
number of nonmanipulable SCFs is exponential in k. The assumption also
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prevents applying the result of Dobzinski and Procaccia to SCFs obtained
from a SCF on many voters when the votes of all voters but two are fixed
(since even if the original SCF is Pareto optimal, the restricted function may
not be so). In our proof we often deal with such restricted SCFs (where the
votes of all but one or two voters are fixed), and this is also what led us to
our quantitative Gibbard-Satterthwaite theorem for one voter.

On NONMANIP versus NONMANIP. The quantitative Gibbard-Satterth-
waite theorems of Friedgut, Kalai, Keller and Nisan [9,8], and Isaksson,
Kindler and Mossel [13] involve the distance of a SCF from NONMANIP.
Any SCF that is not in NONMANIP is manipulable (by the Gibbard-
Satterthwaite theorem), but as some SCFs in NONMANIP are manipu-
lable as well, ideally a quantitative Gibbard-Satterthwaite theorem would
involve the distance of a SCF from the set of (truly) nonmanipulable
SCFs, NONMANIP. Theorem 1.2 addresses this concern, as it involves
the distance of a SCF from NONMANIP. This is done via the follow-
ing reduction theorem that implies that whenever one has a quantita-
tive Gibbard-Satterthwaite theorem involving D

(
f,NONMANIP

)
, this can

be turned into a quantitative Gibbard- Satterthwaite theorem involving
D(f,NONMANIP).

Theorem 1.5. Suppose f is a SCF on n voters and k≥ 3 alternatives for
which D

(
f,NONMANIP

)
≤α. Then either

(3) D(f,NONMANIP) < 100n4k8α1/3

or

(4) P
(
σ ∈M(f)

)
≥ P

(
σ ∈M3(f)

)
≥ α.

The proof of this result also uses Theorem 1.4, our quantitative Gibbard-
Satterthwaite theorem for one voter.

A note on our quantitative bounds. The lower bounds on the probabil-
ity of manipulation derived in Theorems 1.2, 1.4, and various results along
the way, are not tight. Moreover, we do not believe that our techniques allow
us to obtain tight bounds. Consequently, we did not try to optimize these
bounds, but rather focused on the qualitative result: obtaining polynomial
bounds.

1.4. Proof techniques and ideas

In our proof we combine ideas from both Friedgut, Kalai, Keller and
Nisan [9,8] and Isaksson, Kindler and Mossel [13], and in addition we use a
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reverse hypercontractivity lemma that was applied in the proof of a quanti-
tative version of Arrow’s theorem by Mossel [16]. (Reverse hypercontractiv-
ity was originally proved and discussed by Borell [4], and was first applied
by Mossel, O’Donnell, Regev, Steif and Sudakov [17].) Our techniques most
closely resemble those of Isaksson et al. [13]; here the authors used a vari-
ant of the canonical path method to show the existence of a large interface
where three bodies touch. Our goal is also to come to this conclusion, but
we do so via different methods.

We first present our techniques that achieve a lower bound for the prob-
ability of manipulation that involves factors of 1

k! (see Theorem 3.1 in Sec-
tion 3), and then describe how a refined approach leads to a lower bound
which has inverse polynomial dependence on k (see Theorem 7.1 in Sec-
tion 7).

Rankings graph and applying the original Gibbard-Satterthwaite
theorem. As in Isaksson et al. [13], think of the graph G= (V,E) having
vertex set V =Snk , the set of all ranking profiles, and let (σ,σ′)∈E if and only
if σ and σ′ differ in exactly one coordinate. The SCF f : Snk → [k] naturally
partitions V into k subsets. Since every manipulation point must be on the
boundary between two such subsets, we are interested in the size of such
boundaries.

For two alternatives a and b, and voter i, denote by Ba,b
i the boundary

between f−1(a) and f−1(b) in voter i. A lemma from Isaksson et al. [13]
tells us that at least two of the boundaries are large; in the following assume

that these are Ba,b
1 and Ba,c

2 . Now if a ranking profile σ lies on both of these
boundaries, then applying the original Gibbard-Satterthwaite theorem to
the restricted SCF on two voters where we fix all coordinates of σ except
the first two, we get that there must exist a manipulation point which agrees
with σ in all but the first two coordinates. Consequently, if we can show that

the intersection of the boundaries Ba,b
1 and Ba,c

2 is large, then we have many
manipulation points.

Fibers and reverse hypercontractivity. In order to have more “control”
over what is happening at the boundaries, we partition the graph further—
this idea is due to Friedgut et al. [9,8]. Given a ranking profile σ and two
alternatives a and b, σ induces a vector of preferences xa,b(σ) ∈ {−1,1}n
between a and b. For a vector za,b∈{−1,1}n we define the fiber with respect
to preferences between a and b, denoted by F

(
za,b
)
, to be the set of ranking

profiles for which the vector of preferences between a and b is za,b. We can
then partition the vertex set V into such fibers, and work inside each fiber
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separately. Working inside a specific fiber is advantageous, because it gives
us the extra knowledge of the vector of preferences between a and b.

We distinguish two types of fibers: large and small. We say that a fiber
w.r.t. preferences between a and b is large if almost all of the ranking profiles

in this fiber lie on the boundary Ba,b
1 , and small otherwise. Now since the

boundary Ba,b
1 is large, either there is big mass on the large fibers w.r.t.

preferences between a and b or big mass on the small fibers. This holds
analogously for the boundary Ba,c

2 and fibers w.r.t. preferences between a
and c.

Consider the case when there is big mass on the large fibers of both Ba,b
1

and Ba,c
2 . Notice that for a ranking profile σ, being in a fiber w.r.t. prefer-

ences between a and b only depends on the vector of preferences between
a and b, xa,b(σ), which is a uniform bit vector. Similarly, being in a fiber
w.r.t. preferences between a and c only depends on xa,c(σ). Moreover, we
know the exact correlation between the coordinates of xa,b(σ) and xa,c(σ),
and it is in exactly this setting where reverse hypercontractivity applies (see
Lemma 2.3 for a precise statement), and shows that the intersection of the

large fibers of Ba,b
1 and Ba,c

2 is also large. Finally, by the definition of a large

fiber it follows that the intersection of the boundaries Ba,b
1 and Ba,c

2 is large
as well, and we can finish the argument using the Gibbard-Satterthwaite
theorem as above.

To deal with the case when there is big mass on the small fibers of Ba,b
1 we

use various isoperimetric techniques, including the canonical path method
developed for this problem by Isaksson et al. [13]. In particular, we use the

fact that for a small fiber for Ba,b
1 , the size of the boundary of Ba,b

1 in the

small fiber is comparable to the size of Ba,b
1 in the small fiber itself, up to

polynomial factors.

A refined geometry. Using this approach with the rankings graph above,
our bound includes 1

k! factors (see Theorem 3.1 in Section 3). In order to ob-
tain inverse polynomial dependence on k (as in Theorem 7.1 in Section 4), we
use a refined approach, similar to that in Isaksson et al. [13]. Instead of the
rankings graph outlined above, we use an underlying graph with a different
edge structure: (σ,σ′)∈E if and only if σ and σ′ differ in exactly one coor-
dinate, and in this coordinate they differ by a single adjacent transposition.
In order to prove the refined result, we need to show that the geometric and
combinatorial quantities such as boundaries and manipulation points are
roughly the same in the refined graph as in the original rankings graph. In
particular, this is where we need to analyze carefully functions of one voter,
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and ultimately prove a quantitative Gibbard-Satterthwaite theorem for one
voter.

1.5. Organization of the paper

The rest of the paper is outlined as follows. We introduce necessary pre-
liminaries (definitions and previous technical results) in Section 2. We then
proceed by proving Theorem 3.1 in Section 3, which is weaker than Theo-
rem 1.2 in two aspects: first, the condition D(f,NONMANIP)≥ε is replaced
with the stronger condition D

(
f,NONMANIP

)
≥ ε, and second, we allow

factors of 1
k! in our lower bounds for P

(
σ∈M(f)

)
. We continue by explain-

ing the necessary modifications we have to make in the refined setting to
get inverse polynomial dependence on k in Section 4. Additional preliminar-
ies necessary for the proofs of Theorems 7.1, 1.4 and 1.5 are in Section 5,
while the remaining sections contain the proofs of these theorems. We prove
Theorem 1.4 in Section 6, Theorem 7.1 in Section 7, and Theorem 1.5 and
Theorem 1.2 in Section 8. Finally we conclude with some open problems in
Section 9.

2. Preliminaries: definitions and previous technical results

2.1. Boundaries and influences

For a general graph G=(V,E), and a subset of the vertices A⊆G, we define
the edge boundary of A as

∂e(A) = {(u, v) ∈ E : u ∈ A, v /∈ A}.

We also define the boundary (or vertex boundary) of a subset of the vertices
A⊆G to be the set of vertices in A which have a neighbor that is not in A:

∂(A) = {u ∈ A : there exists v /∈ A such that (u, v) ∈ E}.

If u∈∂(A), we also say that u is on the edge boundary of A.
As discussed in Section 1.4, we can view the ranking profiles (which

are elements of Snk ) as vertices of a graph—the rankings graph—where two
vertices are connected by an edge if they differ in exactly one coordinate.
The SCF f naturally partitions the vertices of this graph into k subsets,
depending on the value of f at a given vertex. Clearly, a manipulation point
can only be on the edge boundary of such a subset, and so it is important to
study these boundaries. In this spirit, we introduce the following definitions.
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Definition 8 (Boundaries). For a given SCF f and a given alternative
a∈ [k], we define

Ha(f) = {σ ∈ Snk : f(σ) = a},
the set of ranking profiles where the outcome of the vote is a. The edge
boundary of this set is denoted by Ba(f) :Ba(f)=∂e

(
Ha(f)

)
. This boundary

can be partitioned: we say that the edge boundary of Ha(f) in the direction
of the ith coordinate is

Ba
i (f) = {(σ, σ′) ∈ Ba(f) : σi 6= σ′i}.

The boundary Ba(f) can be therefore written as Ba(f)=∪ni=1B
a
i (f). We can

also define the boundary between two alternatives a and b in the direction
of the ith coordinate:

Ba,b
i (f) = {(σ, σ′) ∈ Ba

i (f) : f(σ′) = b}.

We also say that σ∈Ba
i (f) is on the boundary Ba,b

i (f) if there exists σ′ such

that (σ,σ′)∈Ba,b
i (f).

Definition 9 (Influences). We define the influence of the ith coordinate
on f as

Infi(f) = P
(
f(σ) 6= f

(
σ(i)
))

= P
((
σ, σ(i)

)
∈ ∪ka=1B

a
i (f)

)
,

where σ is uniform on Snk and σ(i) is obtained from σ by rerandomizing the
ith coordinate. Similarly, we define the influence of the ith coordinate with
respect to a single alternative a∈ [k] or a pair of alternatives a,b∈ [k] as

Infai (f) = P
(
f(σ) = a, f

(
σ(i)
)
6= a

)
= P

((
σ, σ(i)

)
∈ Ba

i (f)
)
,

and

Infa,bi (f) = P
(
f(σ) = a, f

(
σ(i)
)

= b
)

= P
((
σ, σ(i)

)
∈ Ba,b

i (f)
)
,

respectively.

Clearly

Infi(f) =

k∑
a=1

Infai (f) =
∑

a,b∈[k] : a6=b

Infa,bi (f).

Most of the time the specific SCF f will be clear from the context, in
which case we omit the dependence on f , and write simply Ba ≡ Ba(f),
Ba
i ≡Ba

i (f), etc.



A QUANTITATIVE GIBBARD-SATTERTHWAITE THEOREM 329

2.2. Large boundaries

The following lemma from Isaksson, Kindler and Mossel [13, Lemma 3.1.]
shows that there are some boundaries which are large (in the sense that they
are only inverse polynomially small in n, k and ε−1)—our task is then to
find many manipulation points on these boundaries.

Lemma 2.1. Fix k≥ 3 and f : Snk → [k] satisfying D(f,NONMANIP)≥ ε.
Then there exist distinct i, j ∈ [n] and {a,b},{c,d}⊆ [k] such that c /∈{a,b}
and

(5) Infa,bi (f) ≥ 2ε

nk2(k − 1)
and Infc,dj (f) ≥ 2ε

nk2(k − 1)
.

2.3. General isoperimetric results

Our rankings graph is the Cartesian product of n complete graphs on k! ver-
tices. We therefore use isoperimetric results on products of graphs—see [12]
for an overview. In particular, the edge-isoperimetric problem on the prod-
uct of complete graphs was originally solved by Lindsey [15], implying the
following result.

Corollary 2.2. If A⊆K`×·· ·×K` (n copies of the complete graph K`) and
|A|≤

(
1− 1

`

)
`n, then |∂e(A)|≥|A|.

2.4. Fibers

In our proof we need to partition the graph even further—this idea is due
to Friedgut, Kalai, Keller, and Nisan [9,8].

Definition 10. For a ranking profile σ∈Snk define the vector

xa,b ≡ xa,b(σ) =
(
xa,b1 (σ), . . . , xa,bn (σ)

)
of preferences between a and b, where xa,bi (σ) = 1 if a

σi
>b and xa,bi (σ) =−1

otherwise.

Definition 11 (Fibers). For a pair of alternatives a,b ∈ [k] and a vector
za,b∈{−1,1}n, write

F
(
za,b
)

:= {σ : xa,b(σ) = za,b}.

We call the F
(
za,b
)

fibers with respect to preferences between a and b.
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So for any pair of alternatives a,b, we can partition the ranking profiles
according to its fibers:

Snk =
⋃

za,b∈{−1,1}n
F
(
za,b
)
.

Given a SCF f , for any pair of alternatives a,b∈ [k] and i∈ [n], we can

also partition the boundary Ba,b
i (f) according to its fibers. There are multi-

ple, slightly different ways of doing this, but for our purposes the following
definition is most useful. Define

Bi
(
za,b
)

:=
{
σ ∈ F

(
za,b
)

: f(σ) = a, and there exists σ′ s.t. (σ, σ′) ∈ Ba,b
i

}
,

where we omit the dependence of Bi
(
za,b
)

on f . So Bi
(
za,b
)
⊆F

(
za,b
)

is the
set of vertices on the given fiber for which the outcome is a and which lies
on the boundary between a and b in direction i. We call the sets of the form

Bi
(
za,b
)

fibers for the boundary Ba,b
i (again omitting the dependence on f

of both sets).

We now distinguish between small and large fibers for the boundary Ba,b
i .

Definition 12 (Small and large fibers). We say that the fiber Bi
(
za,b
)

is large if

(6) P
(
σ ∈ Bi

(
za,b
)
| σ ∈ F

(
za,b
))
≥ 1− ε3

4n3k9
,

and small otherwise.
We denote by Lg

(
Ba,b
i

)
the union of large fibers for the boundary Ba,b

i ,
i.e.,

Lg
(
Ba,b
i

)
:=
{
σ : Bi

(
xa,b(σ)

)
is a large fiber, and σ ∈ Bi

(
xa,b(σ)

)}
and similarly, we denote by Sm

(
Ba,b
i

)
the union of small fibers.

We remark that what is important is that the fraction appearing on the
right hand side of (6) is a polynomial of 1

n , 1
k and ε—the specific polynomial

in this definition is the end result of the computation in the proof.
Finally, for a voter i and a pair of alternatives a,b∈ [k], we define

F a,bi :=
{
σ : Bi

(
xa,b(σ)

)
is a large fiber

}
.

So this means that

(7) P
(
σ ∈ ∪za,bBi

(
za,b
)
| σ ∈ F a,bi

)
≥ 1− ε3

4n3k9
.
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2.5. Boundaries of boundaries

Finally, we also look at boundaries of boundaries. In particular, for a given
vector za,b of preferences between a and b, we can think of the fiber F

(
za,b
)

as a subgraph of the original rankings graph. When we write ∂
(
Bi
(
za,b
))

,

we mean the boundary of Bi
(
za,b
)

in the subgraph of the rankings graph

induced by the fiber F
(
za,b
)
. That is,

∂
(
Bi
(
za,b
))

={σ ∈ Bi
(
za,b
)

: ∃ π ∈ F
(
za,b
)
\Bi

(
za,b
)

s.t.

σ and π differ in exactly one coordinate}.

2.6. Reverse hypercontractivity

We use the following lemma about reverse hypercontractivity from Mos-
sel [16].

Lemma 2.3. Let x,y∈{−1,1}n be distributed uniformly and
{

(xi,yi)
}n
i=1

are independent. Assume that E(xi)=E(yi)=0 for all i and that |E(xiyi)|≤
ρ. Let B1,B2⊂{−1,1}n be two sets and assume that

P(B1) ≥ e−α2
, P(B2) ≥ e−β2

.

Then

P(x ∈ B1, y ∈ B2) ≥ exp

(
−α

2 + β2 + 2ραβ

1− ρ2

)
.

In particular, if P(B1)≥ε and P(B2)≥ε, then

P(x ∈ B1, y ∈ B2) ≥ ε
2

1−ρ .

2.7. Dictators and miscellaneous definitions

For a ranking profile σ=(σ1, . . . ,σn) we sometimes write σ−i for the collec-
tion of all coordinates except the ith coordinate, i.e., σ = (σi,σ−i). Fur-
thermore, we sometimes distinguish two coordinates, e.g., we write σ =(
σ1,σi,σ−{1,i}

)
.

Definition 13 (Induced SCF on one coordinate). Let fσ−i denote the

SCF on one voter induced by f by fixing all voter preferences except the ith

one according to σ−i. I.e.,

fσ−i( · ) := f( · , σ−i).
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Recall Definition 2 of a dictator on a subset.

Definition 14 (Ranking profiles giving dictators on a subset). For
a coordinate i and a subset of alternatives H⊆ [k], define

DH
i := {σ−i : fσ−i( · ) ≡ topH( · )}.

Also, for a pair of alternatives a and b, define

Di(a, b) :=
⋃

H : {a,b}⊆H,|H|≥3

DH
i .

3. Inverse polynomial manipulability for a fixed number
of alternatives

Our goal in this section is to demonstrate the proof techniques described
in Section 1.4. We prove here the following theorem (Theorem 3.1 below),
which is weaker than our main theorem, Theorem 1.2, in two aspects: first,
the condition D(f,NONMANIP) ≥ ε is replaced with the stronger condi-
tion D

(
f,NONMANIP

)
≥ε, and second, we allow factors of 1

k! in our lower

bounds for P
(
σ∈M(f)

)
. The advantage is that the proof of this statement

is relatively simpler. We move on to getting a lower bound with polyno-
mial dependence on k in the following sections, and finally we replace the
condition D

(
f,NONMANIP

)
≥ε with D(f,NONMANIP)≥ε in Section 8.

Theorem 3.1. Suppose we have n≥2 voters, k≥3 alternatives, and a SCF
f : Snk→ [k] satisfying D

(
f,NONMANIP

)
≥ε. Then

(8) P
(
σ ∈M(f)

)
≥ p

(
ε,

1

n
,

1

k!

)
,

for some polynomial p, where σ∈Snk is selected uniformly. In particular, we

show a lower bound of ε5

4n7k12(k!)4
.

An immediate consequence is that

P
(
σ, σ′) is a manipulation pair for f

)
≥ q

(
ε,

1

n
,

1

k!

)
,

for some polynomial q, where σ∈Snk is selected uniformly, and σ′ is obtained
from σ by uniformly selecting a coordinate i∈{1, . . . ,n} and resetting the ith

coordinate to a random preference. In particular, the specific lower bound

for P
(
σ∈M(f)

)
implies that we can take q

(
ε, 1
n ,

1
k!

)
= ε5

4n8k12(k!)5
.
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First we provide an overview of the proof of Theorem 3.1 in Section 3.1.
In this overview we use adjectives such as “big”, and “not too small” to
describe probabilities—here these are all synonymous with “has probability
at least an inverse polynomial of n, k!, and ε−1”.

3.1. Overview of proof

The tactic in proving Theorem 3.1 is roughly the following:

• By Lemma 2.1, we know that there are at least two boundaries which

are big. W.l.o.g. we can assume that these are either Ba,b
1 and Ba,c

2 , or

Ba,b
1 and Bc,d

2 with {a,b}∩{c,d}=∅. Our proof works in both cases, but
we continue the outline of the proof assuming the former case—this is
the more interesting case, since the latter case has been solved already
by Isaksson et al. [13].

• We partition Ba,b
1 according to its fibers based on the preferences between

a and b of the n voters, just like as described in Section 2. Similarly for
Ba,c

2 and preferences between a and c.
• As in Section 2, we can distinguish small and large fibers for these two

boundaries. Now since Ba,b
1 is big, either the mass of small fibers, or the

mass of large fibers is big. Similarly for Ba,c
2 .

• Suppose first that there is big mass on large fibers in both Ba,b
1 and

Ba,c
2 . In this case the probability of our random ranking σ being in F a,b1

is big, and similarly for F a,c2 . Being in F a,b1 only depends on the vector
xa,b(σ) of preferences between a and b, and similarly being in F a,c2 only
depends on the vector xa,c(σ) of preferences between a and c. We know
the correlation between xa,b(σ) and xa,c(σ) and hence we can apply re-
verse hypercontractivity (Lemma 2.3), which tells us that the probability

that σ lies in both F a,b1 and F a,c2 is big as well. If σ∈F a,b1 , then voter 1 is
pivotal between alternatives a and b with big probability, and similarly
if σ∈F a,c2 , then voter 2 is pivotal between alternatives a and c with big
probability. So now we have that the probability that both voter 1 is
pivotal between a and b and voter 2 is pivotal between a and c is big,
and in this case the Gibbard-Satterthwaite theorem tells us that there is
a manipulation point which agrees with this ranking profile in all except
for perhaps the first two coordinates. So there are many manipulation
points.

• Now suppose that the mass of small fibers in Ba,b
1 is big. By isoperimetric

theory, the size of the boundary of every small fiber is comparable (same
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order up to poly−1(ε−1,n,k!) factors) to the size of the small fiber. Con-
sequently, the total size of the boundaries of small fibers is comparable
to the total size of small fibers, which in this case has to be big.
We then distinguish two cases: either we are on the boundary of a small
fiber in the first coordinate, or some other coordinate. If σ is on the
boundary of a small fiber in some coordinate j 6= 1, then the Gibbard-
Satterthwaite theorem tells us that there is a manipulation point which
agrees with σ in all coordinates except perhaps in coordinates 1 and j.
If our ranking profile σ is on the boundary of a small fiber in the first
coordinate, then either there exists a manipulation point which agrees
with σ in all coordinates except perhaps the first, or the SCF on one
voter that we obtain from f by fixing the votes of voters 2 through n to
be σ−1 must be a dictator on some subset of the alternatives. So either
we get sufficiently many manipulation points this way, or for many votes
of voters 2 through n, the restricted SCF obtained from f by fixing these
votes is a dictator on coordinate 1 on some subset of the alternatives.
Finally, to deal with dictators on the first coordinate, we look at the
boundary of the dictators. Since D

(
f,NONMANIP

)
≥ε, the boundary is

big, and we can also show that there is a manipulation point near every
boundary point.
• If the mass of small fibers in Ba,c

2 is big, then we can do the same thing
for this boundary.

3.2. Division into cases

For the remainder of Section 3, let us fix the number of voters n ≥
2, the number of alternatives k ≥ 3, and the SCF f , which satisfies
D
(
f,NONMANIP

)
≥ ε. Accordingly, we typically omit the dependence of

various sets (e.g., boundaries between two alternatives) on f .
Our starting point is Lemma 2.1. W.l.o.g. we may assume that the two

boundaries that the lemma gives us have i=1 and j=2, so the lemma tells
us that

P
((
σ, σ(1)

)
∈ Ba,b

1

)
≥ 2ε

nk3
,

where σ is uniform on the ranking profiles, and σ(1) is obtained by reran-
domizing the first coordinate. This also means that

P
(
σ ∈ ∪za,bB1

(
za,b
))
≥ 2ε

nk3
,

and similar inequalities hold for the boundary Bc,d
2 . The following lemma is

an immediate corollary.
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Lemma 3.2. Either

(9) P
(
σ ∈ Sm

(
Ba,b

1

))
≥ ε

nk3

or

(10) P
(
σ ∈ Lg

(
Ba,b

1

))
≥ ε

nk3
,

and the same can be said for the boundary Bc,d
2 .

We distinguish cases based upon this: either (9) holds, or (9) holds for the

boundary Bc,d
2 , or (10) holds for both boundaries. We only need one bound-

ary for the small fiber case, and we need both boundaries only in the large
fiber case. So in the large fiber case we must differentiate between two cases:
whether d∈{a,b} or d /∈{a,b}. First of all, in the d /∈{a,b} case the problem
of finding a manipulation point with not too small (i.e., inverse polynomial
in n, k! and ε−1) probability has already been solved in [13]. But moreover,
we will see that if d /∈{a,b} then the large fiber case cannot occur—so this
method of proof works as well.

In the rest of the section we first deal with the large fiber case, and then
with the small fiber case.

3.3. Big mass on large fibers

We now deal with the case when

(11) P
(
σ ∈ Lg

(
Ba,b

1

))
≥ ε

nk3

and also

(12) P
(
σ ∈ Lg

(
Bc,d

2

))
≥ ε

nk3
.

As mentioned before, we must differentiate between two cases: whether d∈
{a,b} or d /∈{a,b}.

3.3.1. Case 1. Suppose d∈ {a,b}, in which case we may assume w.l.o.g.
that d=a.

Lemma 3.3. If

(13) P
(
σ ∈ Lg

(
Ba,b

1

))
≥ ε

nk3
and P

(
σ ∈ Lg

(
Ba,c

2

))
≥ ε

nk3
,

then

(14) P(σ ∈M) ≥ ε3

2n3k9(k!)2
.
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Proof. By (13) we have that

P
(
σ ∈ F a,b1

)
≥ ε

nk3
and P

(
σ ∈ F a,c2

)
≥ ε

nk3
.

We know that
∣∣∣E(xa,bi (σ)xa,ci (σ)

)∣∣∣=1/3, and so by reverse hypercontractivity

(Lemma 2.3) we have that

(15) P
(
σ ∈ F a,b1 ∩ F a,c2

)
≥ ε3

n3k9
.

Recall that we say that σ is on the boundary Ba,b
1 if there exists σ′ such

that (σ,σ′)∈Ba,b
1 . If σ∈F a,b1 , then with big probability σ is on the boundary

Ba,b
1 , and if σ ∈F a,c2 , then with big probability σ is on the boundary Ba,c

2 .
Using this and (15) we can show that the probability of σ lying on both the

boundary Ba,b
1 and the boundary Ba,c

2 is big. Then we are done, because if

σ lies on both Ba,b
1 and Ba,c

2 , then by the Gibbard-Satterthwaite theorem
there is a σ̂ which agrees with σ on the last n−2 coordinates, and which is
a manipulation point, and there can be at most (k!)2 ranking profiles that
give the same manipulation point. Let us do the computation:

P
(
σ on Ba,b

1 , σ on Ba,c
2

)
≥ P

(
σ on Ba,b

1 , σ on Ba,c
2 , σ ∈ F a,b1 ∩ F a,c2

)
≥ P

(
σ ∈ F a,b1 ∩ F a,c2

)
− P

(
σ ∈ F a,b1 ∩ F a,c2 , σ not on Ba,b

1

)
− P

(
σ ∈ F a,b1 ∩ F a,c2 , σ not on Ba,c

2

)
.

The first term is bounded below via (15), while the other two terms can be
bounded using (7):

P
(
σ ∈ F a,b1 ∩ F a,c2 , σ not on Ba,b

1

)
≤ P

(
σ ∈ F a,b1 , σ not on Ba,b

1

)
≤ P

(
σ not on Ba,b

1 | σ ∈ F a,b1

)
≤ ε3

4n3k9
,

and similarly for the other term. Putting everything together gives us

P
(
σ on Ba,b

1 , σ on Ba,c
2

)
≥ ε3

2n3k9
,

which by the discussion above implies (14).
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3.3.2. Case 2.

Lemma 3.4. If d /∈{a,b}, then (11) and (12) cannot hold simultaneously.

Proof. Suppose on the contrary that (11) and (12) do both hold. Then

P
(
σ ∈ F a,b1

)
≥ ε

nk3
and P

(
σ ∈ F c,d2

)
≥ ε

nk3

as before. Since {a,b}∩{c,d}=∅, {σ∈F a,b1 } and {σ∈F c,d2 } are independent
events, and so

P
(
σ ∈ F a,b1 ∩ F c,d2

)
= P

(
σ ∈ F a,b1

)
P
(
σ ∈ F c,d2

)
≥ ε2

n2k6
.

In the same way as before, by the definition of large fibers this implies that

P
(
σ on Ba,b

1 , σ on Bc,d
2

)
≥ ε2

2n2k6
> 0,

but it is clear that
P
(
σ on Ba,b

1 , σ on Bc,d
2

)
= 0,

since σ on Ba,b
1 and on Bc,d

2 requires f(σ) ∈ {a,b}∩{c,d}= ∅. So we have
reached a contradiction.

3.4. Big mass on small fibers

We now deal with the case when (9) holds, i.e., when we have a big mass on

the small fibers for the boundary Ba,b
1 . We formalize the ideas of the outline

described in Section 3.1 in a series of statements.
First, we want to formalize that the boundaries of the boundaries are

big, when we are on a small fiber.

Lemma 3.5. Fix coordinate 1 and the pair of alternatives a,b. Let za,b be

such that B1

(
za,b
)

is a small fiber for Ba,b
1 . Then, writing B≡B1

(
za,b
)
, we

have ∣∣∂e(B)
∣∣ ≥ ε3

4n3k9
|B|

and

(16) P(σ ∈ ∂(B)) ≥ ε3

2n4k9k!
P(σ ∈ B),

where both the edge boundary ∂e(B) and the boundary ∂(B) are with re-
spect to the induced subgraph F

(
za,b
)
, which is isomorphic to Kn

k!/2, the

Cartesian product of n complete graphs of size k!/2.
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Proof. We use Corollary 2.2 with `=k!/2 and the set A being either B or
Bc :=F

(
za,b
)
\B. Suppose first that |B|≤

(
1− 2

k!

)
(k!/2)n. Then

∣∣∂e(B)
∣∣≥|B|.

Suppose now that |B|>
(
1− 2

k!

)
(k!/2)n. Since we are in the case of a small

fiber, we also know that |B|≤
(

1− ε3

4n3k9

)
(k!/2)n. Consequently, we get

∣∣∂e(B)
∣∣ =

∣∣∂e(Bc)
∣∣ ≥ |Bc| ≥ ε3

4n3k9
|B|,

which proves the first claim.
A ranking profile in F

(
za,b
)

has (k!/2−1)n≤nk!/2 neighbors in F
(
za,b
)
,

which then implies (16).

Corollary 3.6. If (9) holds, then

P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
)))

≥ ε4

2n5k12k!
.

Proof. Using the previous lemma and (9) we have

P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
)))

=
∑
za,b

P
(
σ ∈ ∂

(
B1

(
za,b
)))

≥
∑

za,b : B1

(
za,b
)
⊆Sm

(
Ba,b1

)P
(
σ ∈ ∂

(
B1

(
za,b
)))

≥
∑

za,b : B1

(
za,b
)
⊆Sm

(
Ba,b1

) ε3

2n4k9k!
P
(
σ ∈ B1

(
za,b
))

=
ε3

2n4k9k!
P
(
σ ∈ Sm

(
Ba,b

1

))
≥ ε4

2n5k12k!
.

Next, we want to find manipulation points on the boundaries of bound-
aries.

Lemma 3.7. Suppose the ranking profile σ is on the boundary of a fiber

for Ba,b
1 , i.e.,

σ ∈
⋃
za,b

∂
(
B1

(
za,b
))
.

Then either σ−1 ∈ D1(a,b), or there exists a manipulation point σ̂ which
differs from σ in at most two coordinates, one of them being the first coor-
dinate.
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Proof. First of all, by our assumption that σ is on the boundary of a fiber

for Ba,b
1 , we know that σ ∈B1

(
za,b
)

for some za,b, which means that there

exists a ranking profile σ′=(σ′1,σ−1) such that (σ,σ′)∈Ba,b
1 . We may assume

a
σ1
>b and b

σ′1
>a, or else either σ or σ′ is a manipulation point.

Now since σ ∈ ∂
(
B1

(
za,b
))

we also know that there exists a ranking

profile π=(πj ,σ−j)∈F
(
za,b
)
\B1

(
za,b
)

for some j∈ [k]. We distinguish two
cases: j 6=1 and j=1.

Case 1: j 6=1. What does it mean for π=(πj ,σ−j) to be on the same fiber
as σ, but for π to not be in B1

(
za,b
)
? First of all, being on the same fiber

means that σj and πj both rank a and b in the same order. Now π /∈B1

(
za,b
)

means that

• either f(π) 6=a;
• or f(π)=a and f(π′1,π−1) 6=b for every π′1∈Sk.

If f(π) = b, then either σ or π is a manipulation point, since the order of a
and b is the same in both σj and πj (since σ and π are on the same fiber).

Suppose f(π) = c /∈ {a,b}. Then we can define a SCF function on two
coordinates by fixing all coordinates except coordinates 1 and j to agree
with the respective coordinates of σ—letting coordinates 1 and j vary we
get a SCF function on two coordinates which takes on at least three values
(a, b, and c), and does not only depend on one coordinate. Now applying
the Gibbard-Satterthwaite theorem we get that this SCF on two coordinates
has a manipulation point, which means that our original SCF f has a ma-
nipulation point which agrees with σ in all coordinates except perhaps in
coordinates 1 and j.

So the final case is that f(π)=a and f(π′1,π−1) 6= b for every π′1∈Sk. In
particular for π̃ := (σ′1,π−1) = (πj ,σ

′
−j) we have f(π̃) 6= b. Now if f(π̃) = a

then either σ′ or π̃ is a manipulation point, since the order of a and b is the
same in both σ′j =σj and πj . Finally, if f(π̃)= c /∈{a,b}, then we can apply
the Gibbard-Satterthwaite theorem just like in the previous paragraph.

Case 2: j=1. We can again ask: what does it mean for π=(π1,σ−1) to
be on the same fiber as σ, but for π to not be in B1

(
za,b
)
? First of all, being

on the same fiber means that σ1 and π1 both rank a and b in the same order
(namely, as discussed at the beginning, ranking a above b, or else we have a
manipulation point). Now π /∈B1

(
za,b
)

means that

• either f(π) 6=a;
• or f(π)=a and f(π′1,π−1) 6=b for every π′1∈Sk.

However, we know that f(σ′)= b and that σ′ is of the form σ′=(σ′1,σ−1)=
(σ′1,π−1), and so the only way we can have π /∈B1

(
za,b
)

is if f(π) 6=a.
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If f(π)=b, then π is a manipulation point, since a
π1
>b and f(σ)=a.

So the remaining case is if f(π) = c /∈ {a,b}. This means that fσ−1 (see
Definition 13) takes on at least three values. Denote by H⊆ [k] the range of
fσ−1 . Now either σ−1 ∈DH

1 ⊆D1(a,b), or there exists a manipulation point
σ̂ which agrees with σ in every coordinate except perhaps the first.

Finally, we need to deal with dictators on the first coordinate.

Lemma 3.8. Assume that D
(
f,NONMANIP

)
≥ε. We have that either

P(σ−1 ∈ D1(a, b)) ≤ ε4

4n5k12k!
,

or

(17) P(σ ∈M) ≥ ε5

4n7k12(k!)4
.

Proof. Suppose P(σ−1∈D1(a,b))≥ ε4

4n5k12k!
, which is the same as

(18)
∑

H : {a,b}⊆H,|H|≥3

P(σ−1 ∈ DH
1 ) ≥ ε4

4n5k12k!
.

Note that for every H⊆ [k] we have

ε ≤ D
(
f,NONMANIP

)
≤ P

(
f(σ) 6= topH(σ1)

)
≤ 1− P(DH

1 ),

and so

(19) P(DH
1 ) ≤ 1− ε.

The main idea is that (19) implies that the size of the boundary of DH
1

is comparable to the size of DH
1 , and if we are on the boundary of DH

1 , then
there is a manipulation point nearby.

So first let us establish that the size of the boundary of DH
1 is compa-

rable to the size of DH
1 . This is done along the same lines as the proof of

Lemma 3.5.
Notice thatDH

1 ⊆S
n−1
k , where Sn−1

k should be thought of as the Cartesian
product of n−1 copies of the complete graph on Sk. We apply Corollary 2.2
with `=k! and with n−1 copies, and we see that if ε≥ 1

k! , then |∂e(DH
1 )|≥

|DH
1 |. If ε< 1

k! and 1− 1
k!≤P(DH

1 )≤1−ε then

|∂e(DH
1 )| =

∣∣∣∂e((DH
1 )c
)∣∣∣ ≥ ∣∣∣(DH

1 )c
∣∣ ≥ ε|DH

1 |.
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So in any case we have |∂e(DH
1 )|≥ε|DH

1 |. Since σ−1 has (n−1)(k!−1)≤nk!
neighbors in Sn−1

k , we have that

P
(
σ−1 ∈ ∂(DH

1 )
)
≥ ε

nk!
P
(
σ−1 ∈ DH

1

)
.

Consequently, by (18), we have

P

σ−1 ∈
⋃

H : {a,b}⊆H,|H|≥3

∂(DH
1 )


=

∑
H : {a,b}⊆H,|H|≥3

P
(
σ−1 ∈ ∂(DH

1 )
)

≥
∑

H : {a,b}⊆H,|H|≥3

ε

nk!
P
(
σ−1 ∈ DH

1

)
≥ ε5

4n6k12(k!)2
.

Next, suppose σ−1∈∂(DH
1 ) for some H such that {a,b}⊆H, |H|≥3. We

want to show that then there is a manipulation point “close” to σ−1 in some
sense. To be more precise: for the manipulation point σ̂, σ̂−1 will agree with
σ−1 in all except maybe one coordinate.

If σ−1 ∈ ∂(DH
1 ), then there exist j ∈ {2, . . . ,n} and σ′j such that σ′−1 :=(

σ′j ,σ−{1,j}
)
/∈DH

1 . That is, fσ′−1
( ·) 6≡ topH( ·). There can be two ways that

this can happen—the two cases are outlined below. Denote by H ′⊆ [k] the
range of fσ′−1

.

Case 1: H′=H. In this case we automatically know that there exists a
manipulation point σ̂ such that σ̂−1 = σ′−1, and so σ̂−1 agrees with σ−1 in
all coordinates except coordinate j.

Case 2: H′ 6=H. W.l.o.g. suppose H ′\H 6=∅, and let c∈H ′\H. (The other
case when H \H ′ 6= ∅ works in exactly the same way.) First of all, we may
assume that fσ′−1

( ·)≡ topH′( ·), because otherwise we have a manipulation

point just like in Case 1.
We can define a SCF on two coordinates by fixing all coordinates except

coordinate 1 and j to agree with σ−1, and varying coordinates 1 and j.
We know that the outcome takes on at least three different values, since
σ−1∈DH

1 , and |H|≥3.
Now let us show that this SCF is not a function of the first coordinate.

Let σ1 be a ranking which puts c first, and then a. Then f(σ1,σ−1) = a,
but f(σ1,σ

′
−1) = c, which shows that this SCF is not a function of the first

coordinate (since a change in coordinate j can change the outcome).
Consequently, the Gibbard-Satterthwaite theorem tells us that this SCF

on two coordinates has a manipulation point, and therefore there exists a
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manipulation point σ̂ for f such that σ̂−1 agrees with σ−1 in all coordinates
except coordinate j.

Putting everything together yields (17).

3.5. Proof of Theorem 3.1 concluded

Proof of Theorem 3.1. If (11) and (12) hold, then we are done by Lem-
mas 3.3 and 3.4.

If not, then either (9) holds, or (9) holds for the boundary Bc,d
2 ; w.l.o.g.

assume that (9) holds.
By Corollary 3.6, we have

P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
)))

≥ ε4

2n5k12k!
.

We may assume that P(σ−1∈D1(a,b))≤ ε4

4n5k12k!
, since otherwise we are

done by Lemma 3.8. Consequently, we then have

P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
))
, σ−1 /∈ D1(a, b)

)
≥ ε4

4n5k12k!
.

We can then finish our argument using Lemma 3.7:

P(σ∈M)≥ 1

n(k!)2
P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
))
, σ−1 /∈ D1(a, b)

)
≥ ε4

4n6k12(k!)3
.

4. An overview of the refined proof

In order to improve on the result of Theorem 3.1—in particular to get rid
of the factor of 1

(k!)4
—we need to refine the methods used in the previous

section. We continue the approach of Isaksson, Kindler and Mossel [13],
where the authors first proved a quantitative Gibbard-Satterthwaite theorem
for neutral SCFs with a bound involving factors of 1

k! , and then with a refined
method were able to remove these factors.

The key to the refined method is to consider the so-called refined rankings
graph instead of the general rankings graph studied in Section 3. The vertices
of this graph are again ranking profiles (elements of Snk ), and two vertices
are connected by an edge if they differ in exactly one coordinate, and by
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an adjacent transposition in that coordinate. Again, the SCF f naturally
partitions the vertices of this graph into k subsets, depending on the value
of f at a given vertex. Clearly a 2-manipulation point can only be on the
edge boundary of such a subset in the refined rankings graph, and so it is
important to study these boundaries.

One of the important steps of the proof in Section 3 is creating a configu-
ration where we fix all but two coordinates, and the SCF f takes on at least
three values when we vary these two coordinates—then we can define an-
other SCF on two voters and k alternatives which must have a manipulation
point by the Gibbard-Satterthwaite theorem. The advantage of the refined
rankings graph is that we can create a configuration where we fix all but
two coordinates, and in these two coordinates we also fix all but constantly
many adjacent alternatives, and the SCF takes on at least three values when
we vary these constantly many adjacent alternatives in the two coordinates.
Then we can define another SCF on two voters and r alternatives, where r
is a small constant, which must have a manipulation point by the Gibbard-
Satterthwaite theorem. Since r is a constant, we only lose a constant factor
in our estimates, not factors of 1

k! .

We state the refined result in Theorem 7.1, which we also prove in Sec-
tion 7. The proof of Theorem 7.1 follows the outline of the proof of Theo-
rem 3.1: we know that there are at least two refined boundaries which are
big (by Isaksson et al. [13]); we partition them according to their fibers; we
distinguish small and large fibers; and we consider two cases: the small fiber
case and the large fiber case. The ideas in both cases are roughly the same
as in Section 3, except the proofs are more involved. There is, however, one
major difference in the small fiber case, which is the following.

The difficulty is dealing with the case when we are on the boundary
of a small fiber in the first coordinate. Suppose σ = (σ1,σ−1) is on such
a boundary. We know that there are k! ranking profiles which agree with
σ in coordinates 2 through n. The difficulty comes from the fact that—in
order to obtain a polynomial bound in k—we are only allowed to look at
a polynomial number (in k) of these ranking profiles when searching for a
manipulation point. If there is an r-manipulation point among them for some
small constant r, then we are done. If this is not the case then σ is what we
call a local dictator on some subset of the alternatives in coordinate 1. We
say that σ is a local dictator on some subset H ⊆ [k] of the alternatives in
coordinate 1 if the alternatives in H are adjacent in σ1, and permuting the
alternatives in H in every possible way in the first coordinate, the outcome
of the SCF f is always the top-ranked alternative in H.
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So instead of dealing with dictators on some subset in coordinate 1, as
in Section 3, we have to deal with local dictators on some subset in coordi-
nate 1. This analysis involves essentially only the first coordinate, in essence
proving a quantitative Gibbard-Satterthwaite theorem for one voter. As dis-
cussed in Section 1.3, this has not been studied in the literature before,
and, moreover, we were not able to utilize previous quantitative Gibbard-
Satterthwaite theorems to solve this problem easily. Hence we separate this
argument from the rest of the proof of Theorem 7.1 and formulate a quan-
titative Gibbard-Satterthwaite theorem for one voter, Theorem 1.4, which
is proven in Section 6. This proof forms the backbone for the proof of The-
orem 7.1, which is then proven in Section 7.

5. Refined rankings graph—introduction and preliminaries

5.1. Transpositions, boundaries, and influences

Definition 15 (Adjacent transpositions). Given two elements a,b∈ [k],
the adjacent transposition [a :b] between them is defined as follows. If σ∈Sk
has a and b adjacent, then [a : b]σ is obtained from σ by exchanging a and
b. Otherwise [a :b]σ=σ.

We let T denote the set of all k(k−1)/2 adjacent transpositions.
For σ∈Snk , we let [a :b]iσ denote the ranking profile obtained by applying

[a :b] on the ith coordinate of σ while leaving all other coordinates unchanged.

Definition 16 (Boundaries). For a given SCF f and a given alternative
a∈ [k], we define

Ha(f) =
{
σ ∈ Snk : f(σ) = a

}
,

the set of ranking profiles where the outcome of the vote is a. The edge
boundary of this set (with respect to the underlying refined rankings graph)
is denoted by Ba;T (f) :Ba;T (f) = ∂e

(
Ha(f)

)
. This boundary can be parti-

tioned: we say that the edge boundary of Ha(f) in the direction of the ith

coordinate is

Ba;T
i (f) =

{
(σ, σ′) ∈ Ba;T (f) : σi 6= σ′i

}
.

The boundary Ba(f) can be therefore written as Ba;T (f) = ∪ni=1B
a;T
i (f).

We can also define the boundary between two alternatives a and b in the
direction of the ith coordinate:

Ba,b;T
i (f) =

{
(σ, σ′) ∈ Ba;T

i (f) : f(σ′) = b
}
.
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Moreover, we can define the boundary between two alternatives a and b in
the direction of the ith coordinate with respect to the adjacent transposition
z∈T :

Ba,b;z
i (f) =

{
(σ, σ′) ∈ Ba;T

i (f) : σ′ = ziσ, f(σ′) = b
}
.

We also say that σ is on the boundary Ba,b;z
i (f) if (σ,ziσ)∈Ba,b;z

i (f). Clearly
we have

Ba,b;T
i (f) =

⋃
z∈T

Ba,b;z
i (f).

Definition 17 (Influences). Given z∈T , we define

Infa,b;zi (f) = P
(
f(σ) = a, f

(
σ(i)
)

= b
)

Infa;z
i (f) = P

(
f(σ) = a, f

(
σ(i)
)
6= a

)
Infa,b;Ti (f) =

∑
z∈T

Infa,b;zi (f),

where σ is uniformly distributed in Snk and σ(i) is obtained from σ by reran-
domizing the ith coordinate σi in the following way: with probability 1/2 we
keep it as σi, and otherwise we replace it by zσi.

Note that for a 6=b,

Infa,b;zi (f) =
1

2
P
(
f(σ) = a, f(ziσ) = b

)
=

1

2

|Ba,b;z
i (f)|
(k!)n

.

Again, most of the time the specific SCF f will be clear from the context,
in which case we omit the dependence on f .

5.2. Manipulation points on refined boundaries

The following two lemmas from Isaksson, Kindler and Mossel [13] identify
manipulation points on (or close to) these refined boundaries.

Lemma 5.1. [13, Lemma 7.1.] Fix f : Snk→ [k], distinct a,b∈ [k] and (σ,π)∈
Ba,b;T
i . Then either σi=[a :b]πi, or one of σ and π is a 2-manipulation point

for f .

Lemma 5.2. [13, Lemma 7.2.] Fix f : Snk→ [k] and points σ,π,µ∈Snk such

that (σ,π)∈Ba,b;T
i , (µ,π)∈Bc,b;T

j where a,b,c are distinct and i 6= j. Then

there exists a 3-manipulation point ν∈Snk for f such that ν`=π` for ` /∈{i, j}
and νi is equal to σi or πi except that the position of c may be shifted
arbitrarily and νj is equal to µj or πj except that the position of a may be
shifted arbitrarily.



346 ELCHANAN MOSSEL, MIKLÓS Z. RÁCZ

5.3. Large refined boundaries

An essential result that will be our starting point in Section 7 is the following
lemma, again from Isaksson, Kindler and Mossel [13], which shows that there
are large refined boundaries (or else we have a lot of 2-manipulation points
automatically).

Lemma 5.3. [13, Lemma 7.3.] Fix k ≥ 3 and f : Snk → [k] satisfying

D(f,NONMANIP)≥ε. Let σ be uniformly selected from Snk . Then either

(20) P
(
σ ∈M2(f)

)
≥ 4ε

nk7
,

or there exist distinct i, j∈ [n] and {a,b},{c,d}⊆ [k] such that c /∈{a,b} and

(21) Inf
a,b;[a:b]
i (f) ≥ 2ε

nk7
and Inf

c,d;[c:d]
j (f) ≥ 2ε

nk7
.

5.4. Fibers

We again use fibers F
(
za,b
)

as defined in Definition 11. However, we need
more than this. We note that the following definitions only apply in Sec-
tion 7, i.e., when we have at least two voters; in Section 6, when we have
only one voter, things are simpler.

Given the result of Lemma 5.3, our primary interest is in the boundary

B
a,b;[a:b]
i . For ranking profiles on this boundary, we know that the alternatives

a and b are adjacent in coordinate i—so we know more than just the prefer-
ence between a and b in coordinate i. Consequently we would like to divide
the set of ranking profiles with a and b adjacent in coordinate i according to
the preferences between a and b in all coordinates except coordinate i. The
following definitions make this precise.

As done in Section 2.7 for ranking profiles, we can write xa,b−i ≡ x
a,b
−i (σ)

for the vector of preferences between a and b for all coordinates except
coordinate i, i.e., the whole vector of preferences between a and b is xa,b(σ)=(
xa,bi (σ),xa,b−i (σ)

)
.

We can define F
(
za,b−i
)

analogously to F
(
za,b
)
:

F
(
za,b−i
)

:=
{
σ : xa,b−i (σ) = za,b−i

}
.

We also define the subset of F
(
za,b−i
)

where a and b are adjacent in coordinate
i, with a above b:

F̄
(
za,b−i
)

:=
{
σ ∈ F

(
za,b−i
)

: a and b are adjacent in coordinate i, with a above b
}
.
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Given a SCF f , for any pair of alternatives a,b ∈ [k] and coordinate

i ∈ [n], we can also partition the boundary Ba,b
i (f) according to its fibers.

There are multiple, slightly different ways of doing this, but for our purposes
the following definition is most useful.

Define

Bi
(
za,b−i
)

:=
{
σ ∈ F̄

(
za,b−i
)

: f(σ) = a, f
(
[a : b]iσ

)
= b
}
,

where we omit the dependence of Bi
(
za,b−i
)

on f . We call sets of the form

Bi
(
za,b−i
)
⊆ F̄

(
za,b−i
)

fibers for the boundary B
a,b;[a:b]
i .

We now distinguish between small and large fibers for the boundary

B
a,b;[a:b]
i .

Definition 18 (Small and large fibers). We say that the fiber Bi
(
za,b−i
)
⊆

F̄
(
za,b−i
)

is large if

P
(
σ ∈ Bi

(
za,b−i
)
| σ ∈ F̄

(
za,b−i
))
≥ 1− γ,

where γ= ε3

103n3k24
, and small otherwise.

As before, we denote by Lg
(
B
a,b;[a:b]
i

)
the union of large fibers for the

boundary B
a,b;[a:b]
i , i.e.,

Lg
(
B
a,b;[a:b]
i

)
:=

⋃
Bi

(
za,b−i

)
is a large fiber

Bi
(
za,b−i
)
,

and similarly, we denote by Sm
(
B
a,b;[a:b]
i

)
the union of small fibers.

As in Definition 12, we remark that what is important is that γ is a poly-
nomial of 1

n , 1
k and ε—the specific polynomial in this definition is the end

result of the computation in the proof.
The following definition is used in Section 7.3 in dealing with the large

fiber case in the refined setting.

Definition 19. For a coordinate i and a pair of alternatives a and b, define

F a,bi to be the set of ranking profiles σ such that xa,b(σ) satisfies

P
(
f
(
σ̃
)

= top{a,b}
(
σ̃i
)
| σ̃ ∈ F

(
xa,b−i (σ)

))
≥ 1− 2kγ.

Clearly F a,bi is the union of fibers of the form F
(
za,b
)
, and also F

((
1,xa,b−i

))
⊆

F a,bi if and only if F
((
−1,xa,b−i

))
⊆F a,bi .
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5.5. Boundaries of boundaries

In the refined graph setting, just like in the general rankings graph setting,
we also look at boundaries of boundaries.

For a given vector za,b−i of preferences between a and b, we can think

of F̄
(
za,b−i
)

as a subgraph of the original refined rankings graph Snk , i.e.,

two ranking profiles in F̄
(
za,b−i
)

are adjacent if they differ by one adjacent
transposition in exactly one coordinate. Since both of the ranking profiles

are in F̄
(
za,b−i
)
, this adjacent transposition keeps the order of a and b in all

coordinates, and moreover it keeps a and b adjacent in coordinate i.

We choose to slightly modify this graph: the vertex set is still F̄
(
za,b−i
)
,

but we modify the edge set by adding new edges. Suppose σ∈ F̄
(
za,b−i
)

and

σi =



...
c
a
b
d
...


; σ′i =



...
a
b
c
d
...


; σ′′i =



...
c
d
a
b
...


.

Define in this way σ′ =
(
σ′i,σ−i

)
and σ′′ =

(
σ′′i ,σ−i

)
, and add (σ,σ′) and(

σ,σ′′
)

to the edge set. So basically, we consider the block of a and b in

coordinate i as a single element, and connect two ranking profiles in F̄
(
za,b−i
)

if they differ in an adjacent transposition in a single coordinate, allowing
this transposition to move the block of a and b in coordinate i. We call this

graph G
(
za,b−i
)

=
(
F̄
(
za,b−i
)
,E
(
za,b−i
))

, where E
(
za,b−i
)

is the edge set.

When we write ∂e

(
Bi
(
za,b−i
))

, we mean the edge boundary of Bi
(
za,b−i
)

in

the graph G
(
za,b−i
)
, and similarly when we write ∂

(
Bi
(
za,b−i
))

, we mean the

vertex boundary of Bi
(
za,b−i
)

in the graph G
(
za,b−i
)
.

5.6. Local dictators, conditioning and miscellaneous definitions

In the general rankings graph setting we defined a dictator on a subset of
the alternatives, but in the refined rankings graph setting we need to define
so-called local dictators.
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Definition 20 (Local dictators). For a coordinate i and a subset of alter-
natives H⊆ [k], define LDH

i to be the set of ranking profiles σ such that the
alternatives in H form an adjacent block in σi, and permuting them among
themselves in any order, the outcome of the SCF f is always the top ranked
alternative among those in H. If σ∈LDH

i , then we call σ a local dictator on
H in coordinate i.

Also, for a pair of alternatives a and b, define

LDi(a, b) :=
⋃

c/∈{a,b}

LD
{a,b,c}
i ,

the set of local dictators on three alternatives, two of which are a and b, in
coordinate i.

In dealing with local dictators, we will condition on the top of a particular
coordinate being fixed. We therefore introduce the following notation.

Definition 21 (Conditioning). For any coordinate i∈ [n] and any vector
v of alternatives we define

Pv
i ( · ) := P

(
· |
(
σi(1), . . . , σi

(
|v|
))

= v
)
,

where |v| denotes the length of the vector v. E.g., P(a)
1 ( ·) =P

(
· |σ1(1) =a

)
and

P(a,b,c)
1 = P

(
· |
(
σ1(1), σ1(2), σ1(3)

)
= (a, b, c)

)
.

We use the following notation in the proof of Theorem 1.5.

Definition 22 (Majority function). For a function f whose domain X
is finite and whose range is the set {a,b}, define Maj(f) by

Maj(f) =

{
a if #

{
x ∈ X : f(x) = a

}
≥ #

{
x ∈ X : f(x) = b

}
,

b if #
{
x ∈ X : f(x) = a

}
< #

{
x ∈ X : f(x) = b

}
.

6. Quantitative Gibbard-Satterthwaite theorem for one voter

In this section we prove our quantitative Gibbard-Satterthwaite theorem for
one voter, Theorem 1.4. As mentioned before, we present this proof before
proving Theorem 7.1, because the proof of Theorem 7.1 follows the lines
of this proof, with slight modifications needed to deal with having n > 1
coordinates.

For the remainder of this section, let us fix the number of voters to
be 1, the number of alternatives k ≥ 3, and the SCF f , which satisfies
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D(f,NONMANIP) ≥ ε. Accordingly, we typically omit the dependence of
various sets (e.g., boundaries between two alternatives) on f .

An additional notational remark: since our SCF is on one voter only, we
omit the subscripts that denote the coordinate we are on. E.g., we write

simply Infa,b instead of Infa,b1 , etc.
We present the proof in several steps.

6.1. Large boundary between two alternatives

The first thing we have to establish is a large boundary between two al-
ternatives. This can be done just like in Lemma 5.3, except there are two
small differences. On the one hand, the assumption of the lemma, namely
that D(f,NONMANIP)≥ε, is weaker than that of the original lemma. On
the other hand, here we only need one big boundary, unlike in Lemma 5.3,
where Isaksson et al. [13] showed that there are two big boundaries in two
different coordinates. The following lemma formulates what we need.

Lemma 6.1. Recall that f is a SCF on 1 voter and k ≥ 3 alternatives
which satisfies D(f,NONMANIP) ≥ ε. Let σ ∈ Sk be selected uniformly.
Then either

(22) P(σ ∈M2) ≥ 4ε

k6

or there exist alternatives a,b∈ [k], a 6=b such that

(23) Infa,b;[a:b] ≥ 2ε

k6
.

Proof. The proof is just like the proof of Lemma 5.3. First, suppose that
Infa,b;z ≥ 2ε

k6
for some pair of alternatives a 6= b, and transposition z 6= [a : b].

Then by Lemma 5.1, for any point (σ,σ′)∈Ba,b;z, at least one of σ or σ′=zσ
is a 2-manipulation point. Then

|M2| ≥ |Ba,b;z| = 2 · k! · Infa,b;z ≥ 4ε

k6
k!,

and dividing with k! gives (22). So for the remainder of the proof we may
assume that Infa,b;z< 2ε

k6
for every a 6=b and z 6=[a :b].

For every a∈ [k], D
(
f,top{a}

)
≥ ε, so P

(
f(σ) = a

)
≤ 1−ε. On the other

hand, there exists an alternative, say a∈ [k], such that P
(
f(σ) =a

)
≥ 1

k . So
for this alternative we have

Var
(
1
[
f(σ) = a

])
≥ ε

k
,
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and consequently using [13, Corollary 6.5] and [13, Proposition 2.3] we have∑
w∈T

∑
b6=a

Infa,b;w =
∑
w∈T

Infa;w ≥ 1

k2
Var
(
1
[
f(σ) = a

])
≥ ε

k3
.

Hence there must exist some w∈T and b 6=a such that Infa,b;w≥ 2ε
k6

, but by
our assumption we must have w=[a :b].

If (22) holds, then we are done, so in the following we assume that (23)
holds.

We know that σ is on Ba,b;[a:b] if f(σ) = a and f([a : b]σ) = b. We know

that if b
σ
> a, then σ is a 2-manipulation point, so if this happens in more

than half of the cases when σ is on Ba,b;[a:b], then we have

P(σ ∈M2) ≥ 2ε

k6
,

in which case we are again done. So we may assume in the following that

(24) P(σ ∈ B) ≥ 2ε

k6
,

where

B :=
{
σ : f(σ) = a, f([a : b]σ) = b, a

σ
> b
}
.

6.2. Division into cases

We again divide into two cases.
We introduce the set F̄ of permutations where a is directly above b:

F̄ :=

{
σ ∈ Sk : a

σ
> b and b

σ′

> a, where σ′ = [a : b]σ

}
.

One of the following two cases must hold.
Case 1: Small fiber case. We have

(25) P
(
σ ∈ B | σ ∈ F̄

)
≤ 1− ε

4k
.

Case 2: Large fiber case. We have

(26) P
(
σ ∈ B | σ ∈ F̄

)
> 1− ε

4k
.
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6.3. Small fiber case

In this section we assume that (25) holds.
We first formalize that the boundary ∂(B) of B is big (recall the definition

of ∂(B) from Section 5.5). The proof uses the canonical path method, as
successfully adapted to this setting by Isaksson et al. [13].

Lemma 6.2. If (25) holds, then

(27) P(σ ∈ ∂(B)) ≥ ε

2k4
P(σ ∈ B).

Proof. Let Bc= F̄ \B. For every (σ,σ′)∈B×Bc, we define a canonical path
from σ to σ′, which has to pass through at least one edge in ∂e(B). Then if
we show that every edge in ∂e(B) lies on at most r canonical paths, then it
follows that

∣∣∂e(B)
∣∣≥|B||Bc|/r.

So let (σ,σ′)∈B×Bc. We apply the path construction of [13, Proposition
6.4.], but considering the block formed by a and b as a single element. Since
this path goes from σ (which is in B) to σ′ (which is in Bc), it must pass
through at least one edge in ∂e(B).

For a given edge (π,π′)∈∂e(B), at most how many possible (σ,σ′)∈B×Bc

pairs are there such that the canonical path between σ and σ′ defined above
passes through (π,π′)? We learn from [13, Proposition 6.4.] that there are
at most (k−1)2 (k−1)!/2<k2(k−1)!/2 possibilities for the pair (σ,σ′).

Recall that
∣∣F̄ ∣∣=(k−1)!. By our assumption we have |B|≤

(
1− ε

4k

)
(k−1)!,

and so |Bc|≥ ε
4k (k−1)!. Therefore

∣∣∂e(B)
∣∣ ≥ |B||Bc|

k2

2 (k − 1)!
≥ ε

2k3
|B|.

Now in G every ranking profile has k−2<k neighbors, which implies (27).

Corollary 6.3. If (25) holds, then

(28) P(σ ∈ ∂(B)) ≥ ε2

k10
.

Proof. Combine Lemma 6.2 and (24).

Next we want to find manipulation points on the boundary ∂(B). The
next lemma tells us that if we are on the boundary ∂(B), then either we
can find manipulation points easily, or we are at a local dictator on three
alternatives.
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Lemma 6.4. Suppose that σ∈∂(B). Then

• either σ∈LD(a,b),
• or there exists σ̂∈M3 such that σ̂ is equal to σ or [a :b]σ except that the

position of a third alternative c might be shifted arbitrarily.

Proof. Since σ∈∂(B)⊆B, we know that f(σ)=a, and if σ′=[a : b]σ, then
f(σ′) = b. Let π ∈ Bc denote the ranking profile such that (σ,π) ∈ ∂e(B),
and let π′=[a :b]π. Since π /∈B,

(
f(π),f(π′)

)
6=(a,b). Then, by Lemma 5.1,

if f(π) 6= f(π′), then one of π and π′ is a 2-manipulation point. So assume
f(π)=f(π′).

There are two cases to consider: either σ and π differ by an adjacent
transposition not involving the block of a and b, or they differ by an adjacent
transposition that moves the block of a and b.

In the former case, it is not hard to see that one of σ, σ′, π, π′ is a
2-manipulation point, by Lemma 5.1.

If σ and π differ by an adjacent transposition that involves the block of
a and b, then there are again two cases to consider: either this transposition
moves the block of a and b up in the ranking, or it moves it down.

If the block of a and b is moved up to get from σ to π, then we must
have f(π)=a, or else σ or π is a 3-manipulation point. Then we must have
f(π′)=f(π)=a, in which case π′ is a 3-manipulation point, since f(σ′)=b.

The final case is when the block of a and b is moved down to get from
σ to π, and a third alternative, call it c, is moved up, directly above the
block of a and b. Now if f(π)=d /∈{a,b,c}, then σ or π is a 3-manipulation
point. If f(π) = f(π′) = a, then π′ is a 3-manipulation point, whereas if
f(π) = f(π′) = b, then π is a 3-manipulation point. The remaining case is
when f(π)=f(π′)=c. Now if f

(
[b :c]σ

)
6=a or f

(
[a :c]σ′

)
6=b, then we again

have a 3-manipulation point close to σ. Otherwise σ∈LD(a,b).

The following corollary then tells us that either we have found many 3-
manipulation points, or we have many local dictators on three alternatives.

Corollary 6.5. If (25) holds, then either

(29)
∑

c/∈{a,b}

P
(
σ ∈ LD{a,b,c}

)
= P

(
σ ∈ LD(a, b)

)
≥ ε2

2k10

or

P(σ ∈M3) ≥ ε2

4k12
.
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6.3.1. Dealing with local dictators. So the remaining case we have to
deal with in this small fiber case is when (29) holds, i.e., we have many local
dictators on three alternatives.

Lemma 6.6. Suppose σ ∈ LD{a,b,c} for some alternative c /∈ {a,b}. Let σ′

be equal to σ except that the block of a, b and c is moved to the top of the
coordinate. Then

• either σ′∈LD{a,b,c},
• or there exists a 3-manipulation point σ̂ which agrees with σ except that

the positions of a, b and c might be shifted arbitrarily.

Proof. W.l.o.g. we may assume that in σ alternative a is ranked above b,
which is ranked above c. Now move a to the top using a sequence of adjacent
transpositions, all involving a; we call this procedure “bubbling” a to the
top. If at any point during this the outcome of f is not a, then we have found
a 2-manipulation point. Now bubble up b to right below a, and then bubble
up c to be right below b. Again, if at any point during this the outcome
of f is not a, then there is a 2-manipulation point. Otherwise we now have
a, b and c at the top (in this order), with the outcome of f being a. Now
permuting alternatives a, b and c at the top, we either have a 3-manipulation
point, or σ′∈LD{a,b,c}.

Corollary 6.7. If (29) holds, then either

(30)
∑

c/∈{a,b}

P
(
σ ∈ LD{a,b,c}, {σ(1), σ(2), σ(3)} = {a, b, c}

)
≥ ε2

4k11

or

P(σ ∈M3) ≥ ε2

4k13
.

Proof. Lemma 6.6 tells us that when we move the block of a, b, and c up
to the top, we either encounter a 3-manipulation point, or we get a local
dictator on {a,b,c} at the top.

If we get a 3-manipulation point, by the describtion of this manipulation
point in the lemma, there can be at most k3 ranking profiles that give the
same manipulation point.

If we arrive at a local dictator at the top, then there could have been at
most k different places where the block of a, b and c could have come from.

Now (30) is equivalent to

(31)
∑

c/∈{a,b}

P
(
σ ∈ LD{a,b,c}, (σ(1), σ(2), σ(3)) = (a, b, c)

)
≥ ε2

24k11
.
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We know that

P
(
(σ(1), σ(2), σ(3)) = (a, b, c)

)
=

1

k(k − 1)(k − 2)
≤ 6

k3
,

and so (31) implies (recall Definition 21)

(32)
∑

c/∈{a,b}

P(a,b,c)
(
σ ∈ LD{a,b,c}

)
≥ ε2

144k8
.

Now fix an alternative c /∈ {a,b} and define the graph G(a,b,c) =(
V(a,b,c),E(a,b,c)

)
to have vertex set

V(a,b,c) :=
{
σ ∈ Sk : (σ(1), σ(2), σ(3)) = (a, b, c)

}
and for σ,π ∈ V(a,b,c) let (σ,π) ∈E(a,b,c) if and only if σ and π differ by an
adjacent transposition. So G(a,b,c) is the subgraph of the refined rankings
graph induced by the vertex set V(a,b,c). (If k= 3 or k= 4, then this graph
consists of only one vertex, and no edges.)

Let

T (a, b, c) := V(a,b,c) ∩ LD{a,b,c},

and let ∂e
(
T (a,b,c)

)
and ∂

(
T (a,b,c)

)
denote the edge- and vertex-boundary

of T (a,b,c) in G(a,b,c), respectively.
The next lemma shows that unless T (a,b,c) is almost all of V(a,b,c), the

size of the boundary ∂
(
T (a,b,c)

)
is comparable to the size of T (a,b,c). The

proof uses a canonical path argument, just like in Lemma 6.2.

Lemma 6.8. Let c /∈{a,b} be arbitrary. Write T ≡T (a,b,c) for simplicity.
If P(a,b,c)(σ∈T )≤1−δ, then

(33) P(a,b,c)
(
σ ∈ ∂(T )

)
≥ δ

k3
P(a,b,c)(σ ∈ T ).

Proof. Let T c = V(a,b,c) \T (a,b,c). For every (σ,σ′) ∈ T ×T c, we define a
canonical path from σ to σ′, which has to pass through at least one edge in
∂e(T ). Then if we show that every edge in ∂e(T ) lies on at most r canonical
paths, then it follows that |∂e(T )|≥|T ||T c|/r.

So let (σ,σ′)∈T×T c. We apply the path construction of [13, Proposition
6.4.], but only to alternatives [k]\{a,b,c}.

The analysis of this construction is done in exactly the same way as in
Lemma 6.2; in the end we get that there are at most k2(k−3)! paths that
pass through a given edge in ∂e(T ).
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Recall that |V(a,b,c)|=(k−3)! and that by our assumption |T |≤(1−δ)(k−
3)!, so |T c|≥δ(k−3)!. Therefore

|∂e(T )| ≥ |T ||T c|
k2(k − 3)!

≥ δ

k2
|T |.

Now every vertex in V(a,b,c) has k−4<k neighbors, which implies (33).

The next lemma tells us that if σ is on the boundary of a set of local dicta-
tors on {a,b,c} for some alternative c /∈{a,b}, then there is a 2-manipulation
point σ̂ which is close to σ.

Lemma 6.9. Suppose σ∈∂
(
T (a,b,c)

)
for some c /∈{a,b}. Then there exists

σ̂ ∈M2 which equals zσ for some adjacent transposition z that does not
involve a, b or c, except that the order of the block of a, b and c might be
rearranged.

Proof. Let π be the ranking profile such that (σ,π) ∈ ∂e
(
T (a,b,c)

)
, and

let z be the adjacent transposition in which they differ, i.e., π = zσ. Since
π /∈T (a,b,c), there exists a reordering of the block of a, b, and c at the top
of π such that the outcome of f is not the top ranked alternative. Call the
resulting vector π′. W.l.o.g. let us assume that π′(1) =a. Let us also define
σ′ :=zπ′. Now π′ is a 2-manipulation point, since f(σ′)=a.

The next corollary puts together Corollary 6.7 and Lemmas 6.8 and 6.9.

Corollary 6.10. Suppose (30) holds. Then if for every c /∈ {a,b} we have
P(a,b,c)

(
σ∈T (a,b,c)

)
≤1− ε

100k , then

P(σ ∈M2) ≥ ε3

105k16
.

Proof. We know that (30) implies

∑
c/∈{a,b}

Pa,b,c
(
σ ∈ T (a, b, c)

)
≥ ε2

144k8
.
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Now using the assumptions, Lemma 6.8 with δ= ε
100k , and Lemma 6.9, we

have

P(σ ∈M2) ≥
∑

c6={a,b}

1

k3
P(a,b,c)(σ ∈M2)

≥
∑

c/∈{a,b}

1

6k4
P(a,b,c)

(
σ ∈ ∂

(
T (a, b, c)

))
≥

∑
c/∈{a,b}

ε

600k8
P(a,b,c)

(
σ ∈ T (a, b, c)

)
≥ ε3

86400k16
≥ ε3

105k16
.

So again we are left with one case to deal with: if there exists an alter-
native c /∈{a,b} such that P(a,b,c)

(
σ∈T (a,b,c)

)
>1− ε

100k . Define a subset of
alternatives K⊆ [k] in the following way:

K := {a, b} ∪
{
c ∈ [k] \ {a, b} : P(a,b,c)

(
σ ∈ T (a, b, c)

)
> 1− ε

100k

}
.

In addition to a and b, K contains those alternatives that whenever they are
at the top with a and b, they form a local dictator with high probability.

So our assumption now is that |K|≥3.
Our next step is to show that unless we have many manipulation points,

for any alternative c∈K, conditioned on c being at the top, the outcome of
f is c with probability close to 1.

Lemma 6.11. Let c∈K. Then either

(34) P(c)
(
f(σ) = c

)
≥ 1− ε

50k
,

or

(35) P(σ ∈M2) ≥ ε

100k4
.

Proof. First assume that c /∈{a,b}.
Let σ be uniform according to P(c), i.e., uniform on Sk conditioned on

σ(1) = c. Define σ′, where σ′ is constructed from σ by first bubbling up al-
ternative a to just below c, using adjacent transpositions, and then bubbling
up b to just below a. Clearly σ′ is distributed according to P(c,a,b), i.e., it is
uniform on Sk conditioned on (σ(1),σ(2),σ(3))=(c,a,b).
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Since c ∈ K, we know that P(c,a,b)
(
σ ∈ LD{a,b,c}

)
> 1− ε

100k . This also
means that

P(c)
(
σ′ ∈ LD{a,b,c}

)
> 1− ε

100k
.

Now we can partition the ranking profiles into three parts, based on the
outcome of the SCF f at σ and σ′:

I1 =
{
σ : f(σ) = c, f(σ′) = c

}
I2 =

{
σ : f(σ) 6= c, f(σ′) = c

}
I3 =

{
σ : f(σ′) 6= c

}
.

If P(c)(I1)≥ 1− ε
50k , then (34) holds. Otherwise we have P(c)(I2∪ I3)≥ ε

50k ,

and since P(c)(I3)≤ ε
100k , we have P(c)(I2)≥ ε

100k .
Now if σ ∈ I2, then we know that there is a 2-manipulation point along

the way as we go from σ to σ′. I.e., to every σ∈I2 there exists σ̂∈M2 such
that σ̂ is equal to σ except perhaps a and b are shifted arbitrarily. So there
can be at most k2 ranking profiles σ giving the same 2-manipulation point
σ̂, and so we have

P(σ ∈M2) ≥ 1

k
P(c)(σ ∈M2) ≥ 1

k3
P(c)(I2) ≥ ε

100k4
,

showing (35).
Now suppose c∈{a,b}, w.l.o.g. assume c=a. We know that |K|≥3 and

so there exists an alternative d∈K \{a,b}. We can then do the same thing
as above, but we now bubble up b and d.

We now deal with alternatives that are not in K: either we have many
manipulation points, or for any alternative d /∈K, the outcome of f is not d
with probability close to 1.

Lemma 6.12. Let d /∈K. If P
(
f(σ)=d

)
≥ ε

4k , then

P(σ ∈M2) ≥ ε2

106k9
.

Proof. Let σ be such that f(σ) = d. Bubble up d to the top, and call this
ranking profile σ′. Now if f(σ′) 6= d, then we know that there exists a 2-
manipulation point σ̂ along the way, i.e., a 2-manipulation σ̂ which agrees
with σ except perhaps d is shifted arbitrarily. Consequently, either

P(σ ∈M2) ≥ ε

8k2
,
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in which case we are done, or

P
(
σ : f(σ) = f(σ′) = d

)
≥ ε

8k
.

Next, let us bubble up a to just below d, and then bubble up b to
just below d. Denote this ranking profile by σ(d,b,a), and analogously de-
fine σ(d,a,b),σ(a,b,d),σ(a,d,b),σ(b,a,d), and σ(b,d,a). Either we encounter a 2-
manipulation point σ̂ along the way of bubbling up to σ(d,b,a) (σ̂ agrees
with σ except d is at the top, and a and b might be arbitrarily shifted), or
the outcome of the SCF f is d all along. So we have that either

P(σ ∈M2) ≥ ε

16k3
,

in which case we are done, or

P
(
σ : f(σ) = f(σ′) = f

(
σ(d,b,a)

)
= f

(
σ(d,a,b)

)
= d
)
≥ ε

16k
.

Now start from σ(d,a,b). First swap a and d to get σ(a,d,b), then swap d and
b to get σ(a,b,d), and finally bubble d and b down to their original positions
in σ, except for the fact that a is now at the top of the coordinate. Call this

profile σ̄. Since σ is uniformly distributed, σ̄ is distributed according to P(a)
1 ,

i.e., uniformly conditional on σ̄(1) = a. Now note that one of the following
three events has to happen. (These events are not mutually exclusive.)

I1 =
{
f
(
σ(a,d,b)

)
= f

(
σ(a,b,d)

)
= a

}
I2 =

{
f
(
σ̄
)
6= a

}
I3 = {σ : ∃ σ̂ ∈M2 which is equal to σ except a is shifted

to the top, and b and d may be shifted arbitrarily}.

Since a∈K, we know by Lemma 6.11 that (unless we already have enough
manipulation points by the lemma) we must have

P
(
f
(
σ̄
)
6= a

)
= P(a)

(
f
(
σ̄
)
6= a

)
≤ ε

50k
.

Consequently

P
(
I1 ∪ I3, f(σ)=f(σ′)=f

(
σ(d,b,a)

)
=f
(
σ(d,a,b)

)
=d
)
≥ ε

16k
− ε

50k
=

17ε

400k
,

and so either

P(σ ∈M2) ≥ 17ε

800k3
,
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in which case we are done, or

P
(
σ : f

(
σ(d,b,a)

)
= f

(
σ(d,a,b)

)
= d, f

(
σ(a,b,d)

)
= f

(
σ(a,d,b)

)
= a

)
≥ 17ε

800k
.

Next, we can do the same thing with b on top, and we ultimately get
that either

P(σ ∈M2) ≥ ε

1600k3
,

in which case we are done, or

(36) P(a,b,d)
(
σ(a,b,d) ∈ LD{a,b,d}

)
= P

(
σ : σ(a,b,d) ∈ LD{a,b,d}

)
≥ ε

1600k
.

Define G(a,b,d) and T(a,b,d) analogously to G(a,b,c) and T(a,b,c), respectively.
Suppose that (36) holds. We also know that d /∈K, so Lemma 6.8 applies,

and then Lemma 6.9 shows us how to find manipulation points. We can put
these arguments together, just like in the proof of Corollary 6.10, to show
what we need:

P(σ ∈M2) ≥ 1

k3
P(a,b,d)(σ ∈M2) ≥ 1

6k4
P(a,b,d)

(
σ ∈ ∂

(
T (a, b, d)

))
≥ ε

600k8
P(a,b,d)

(
σ ∈ T (a, b, d)

)
≥ ε2

106k9
.

Putting together the results of the previous lemmas, there is only one case
to be covered, which is covered by the following final lemma. Basically, this
lemma says that unless there are enough manipulation points, our function
is close to a dictator on the subset of alternatives K.

Lemma 6.13. Recall that we assume that D(f,NONMANIP)≥ε. Further-
more assume that |K|≥3, for every c∈K we have

(37) P(c)
(
f(σ) = c

)
≥ 1− ε

50k
,

and for every d /∈K we have

P
(
f(σ) = d

)
≤ ε

4k
.

Then

(38) P(σ ∈M2) ≥ ε

4k2
.
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Proof. First note that

P
(
f(σ) 6= topK(σ)

)
= P

(
f(σ) /∈ K

)
+ P

(
f(σ) 6= topK(σ), f(σ) ∈ K

)
.

We know that

ε ≤ D(f,NONMANIP) ≤ P
(
f(σ) 6= topK(σ)

)
and also that

P
(
f(σ) /∈ K

)
≤ (k − |K|) ε

4k
≤ ε

2
,

which together imply that

P
(
f(σ) 6= topK(σ), f(σ) ∈ K

)
≥ ε

2
.

Let σ be such that f(σ) 6= topK(σ) and f(σ)∈K. Now bubble topK(σ) up
to the top in σ, call this ranking profile σ̄. Clearly then topK

(
σ̄
)

=topK(σ).

There are two cases to consider. If f(σ) 6= f
(
σ̄
)
, then there is a 2-

manipulation point along the way from σ to σ̄, i.e., a 2-manipulation point
σ̂ such that σ̂ agrees with σ except perhaps some alternative c is arbitrarily
shifted. Otherwise f(σ)=f

(
σ̄
)
, and so f

(
σ̄
)
6=topK

(
σ̄
)
.

Consequently we have that either (38) holds, or that

(39) P
(
σ : f

(
σ̄
)
6= topK

(
σ̄
))
≥ ε

4
.

By the construction of σ̄, we know that σ̄ is uniformly distributed conditional
on σ̄(1)∈K. Consequently, by (37), we have that

P
(
σ : f

(
σ̄
)
6= topK

(
σ̄
))
≤ ε

50k
,

which contradicts with (39) since ε
50k <

ε
4 .

This concludes the proof of the small fiber case.

6.4. Large fiber case

In this section we assume that (26) holds. We show that we either have
a lot 2-manipulation points or we have a lot of local dictators on three
alternatives.

Our first step towards this is the following lemma.

Lemma 6.14. Suppose (26) holds. Then

(40) P(a,b)(σ ∈ B) ≥ 1− ε

4
.
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Proof. Let Bc= F̄ \B. Our assumption (26) implies that P
(
σ∈Bc |σ∈ F̄

)
≤

ε
4k , which means that |Bc|≤ ε(k−1)!

4k , and so

P(a,b)(σ /∈ B) ≤ ε(k − 1)!

4k(k − 2)!
<
ε

4
,

which is equivalent to (40).

The next lemma (together with Section 6.3.1) concludes the proof in the
large fiber case.

Lemma 6.15. Suppose (26) holds and recall that our SCF f satisfies
D(f,NONMANIP)≥ε. Then either

(41) P(σ ∈M2) ≥ ε

4k2

or

(42) P
(
σ ∈ LD(a, b)

)
≥ ε

4k2
.

Proof. By Lemma 6.14 we know that (40) holds.
Let σ∈Sk be uniform. Define σ′ by being the same as σ except alterna-

tives a and b are moved to the top of the coordinate: σ′(1)=a and σ′(2)=b.
Clearly σ′ is distributed according to P(a,b)( ·). Also define σ′′=[a :b]σ′.

We partition the set of ranking profiles Sk into three parts:

I1 :=
{
σ ∈ Sk : f(σ) = top{a,b}(σ),

(
f(σ′), f(σ′′)

)
= (a, b)

}
I2 :=

{
σ ∈ Sk : f(σ) 6= top{a,b}(σ),

(
f(σ′), f(σ′′)

)
= (a, b)

}
I3 :=

{
σ ∈ Sk :

(
f(σ′), f(σ′′)

)
6= (a, b)

}
.

By (40) we know that P(σ∈I3)≤ ε
4 . We also know that P(σ∈I1)≤1−ε,

since D(f,NONMANIP)≥ε. Therefore we must have

P(σ ∈ I2) ≥ 3ε

4
>
ε

2
.

Let us partition I2 further, and write it as I2 =I ′2∪
(
∪c/∈{a,b}I2,c

)
, where

I ′2 :=
{
σ ∈ I2 : f(σ) 6= top{a,b}(σ), f(σ) ∈ {a, b}

}
and for any c /∈{a,b},

I2,c :=
{
σ ∈ I2 : f(σ) = c

}
.
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Suppose σ ∈ I ′2. W.l.o.g. let us assume that a is ranked higher than b
by σ, and therefore f(σ) = b, since σ ∈ I ′2. Then we can get from σ to σ′

by first bubbling up a to the top, and then bubbling up b to just below a.
Since f(σ)=b and f(σ′)=a, there must be a 2-manipulation point σ̂ along
the way, which is equal to σ except perhaps the positions of a and b are
arbitrarily shifted.

Now suppose that σ ∈ I2,c for some c /∈{a,b}. We distinguish two cases:
either c is ranked above both a and b in σ, or it is not.

If not, then say a is ranked above c in σ. Bubble a all the way to the top,
and then bubble b as well, all the way to the top, just below a. Since f(σ)=c
and f(σ′)=a, there must be a 2-manipulation point σ̂ along the way, which
is equal to σ except perhaps the positions of a and b are arbitrarily shifted.

If c is ranked above both a and b in σ, then the argument is similar. First
bubble up a and b to just below c, and denote this ranking profile by σ̃, then
permute these three alternatives arbitrarily, and then bubble a and b to the
top. It is not hard to think through that either there is a 2-manipulation σ̂
along the way, which is then equal to σ except perhaps the positions of a
and b are arbitrarily shifted, or else σ̃∈LD{a,b,c}.

Combining these cases we see that either (41) or (42) must hold.

So if (41) holds then we are done, and if (42) holds, then we refer back
to Section 6.3.1, where we deal with the case of local dictators on three
alternatives.

6.5. Proof of Theorem 1.4 concluded

Proof of Theorem 1.4. Our starting point is Lemma 6.1, which implies
that (24) holds (unless we already have many 2-manipulation points). We
then consider two cases, as indicated in Section 6.2.

We deal with the small fiber case—when (25) holds—in Section 6.3. First,
Lemma 6.2, Corollary 6.3, Lemma 6.4 and Corollary 6.5 show that either
there are many 3-manipulation points, or there are many local dictators
on three alternatives. We then deal with the case of many local dictators
in Section 6.3.1. Lemma 6.6, Corollary 6.7, Lemmas 6.8 and 6.9, Corol-
lary 6.10, and Lemmas 6.11, 6.12 and 6.13 together show that there are
many 3-manipulation points if there are many local dictators on three alter-
natives, and the SCF is ε-far from the family of nonmanipulable functions.

We deal with the large fiber case—when (26) holds—in Section 6.4. Here
Lemma 6.15 shows that either we have many 2-manipulation points, or we
have many local dictators on three alternatives. In this latter case we refer
back to Section 6.3.1 to conclude the proof.
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7. Inverse polynomial manipulability for any number of
alternatives

In this section we prove the theorem below, which is the same
as our main theorem, Theorem 1.2, except that the condition of
D(f,NONMANIP)≥ε from Theorem 1.2 is replaced with the stronger con-
dition D

(
f,NONMANIP

)
≥ε.

Theorem 7.1. Suppose we have n≥2 voters, k≥3 alternatives, and a SCF
f : Snk→ [k] satisfying D

(
f,NONMANIP

)
≥ε. Then

(43) P
(
σ ∈M(f)

)
≥ P

(
σ ∈M4(f)

)
≥ p

(
ε,

1

n
,

1

k

)
,

for some polynomial p, where σ∈Snk is selected uniformly. In particular, we

show a lower bound of ε5

109n7k46
.

An immediate consequence is that

P
(
(σ, σ′) is a manipulation pair for f

)
≥ q

(
ε,

1

n
,

1

k

)
,

for some polynomial q, where σ∈Snk is uniformly selected, and σ′ is obtained
from σ by uniformly selecting a coordinate i∈{1, . . . ,n}, uniformly selecting
j ∈ {1, . . . ,k − 3}, and then uniformly randomly permuting the following
four adjacent alternatives in σi: σi(j),σi(j+ 1),σi(j+ 2), and σi(j+ 3). In
particular, the specific lower bound for P

(
σ ∈M4(f)

)
implies that we can

take q
(
ε, 1
n ,

1
k

)
= ε5

1011n8k47
.

For the remainder of the section, let us fix the number of voters
n ≥ 2, the number of alternatives k ≥ 3, and the SCF f , which satisfies
D
(
f,NONMANIP

)
≥ ε. Accordingly, we typically omit the dependence of

various sets (e.g., boundaries between two alternatives) on f .

7.1. Division into cases

Our starting point in proving Theorem 7.1 is Lemma 5.3. Clearly if (20)
holds then we are done, so in the rest of Section 7 we assume that this is
not the case. Then Lemma 5.3 tells us that (21) holds, and w.l.o.g. we may
assume that the two boundaries that the lemma gives us have i = 1 and
j=2. I.e., we have

P
(
σ on B

a,b;[a:b]
1

)
≥ 4ε

nk7
and P

(
σ on B

c,d;[c:d]
2

)
≥ 4ε

nk7
,
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where recall that σ is on B
a,b;[a:b]
1 if f(σ) = a and f

(
[a : b]1σ

)
= b. If σ is on

B
a,b;[a:b]
1 and b

σ1
> a, then σ is a 2-manipulation point, so if this happens in

more than half of the cases when σ is on B
a,b;[a:b]
1 , then we have

P(σ ∈M2) ≥ 2ε

nk7
,

and we are done. Similarly in the case of the boundary between c and d in
coordinate 2. So we may assume from now on that

P
(
σ ∈ ∪

za,b−1
B1

(
za,b−1

))
≥ 2ε

nk7
and P

(
σ ∈ ∪

zc,d−2
B2

(
zc,d−2

))
≥ 2ε

nk7
.

The following lemma is an immediate corollary.

Lemma 7.2. Either

(44) P
(
σ ∈ Sm

(
B
a,b;[a:b]
1

))
≥ ε

nk7

or

(45) P
(
σ ∈ Lg

(
B
a,b;[a:b]
1

))
≥ ε

nk7
,

and the same can be said for the boundary B
c,d;[c:d]
2 .

We distinguish cases based upon this: either (44) holds, or (44) holds

for the boundary B
c,d;[c:d]
2 , or (45) holds for both boundaries. We only need

one boundary for the small fiber case, and we need both boundaries only in
the large fiber case. So in the large fiber case we must differentiate between
two cases: whether d∈{a,b} or d /∈{a,b}. First of all, in the d /∈{a,b} case
the problem of finding a manipulation point with not too small (i.e., inverse
polynomial in n, k and ε−1) probability has already been solved by Isaksson,
Kindler and Mossel [13], so we are primarily interested in the d∈{a,b} case.
But moreover, we will see that our method of proof works in both cases.

In the rest of the section we first deal with the small fiber case, and then
with the large fiber case.

7.2. Small fiber case

We now deal with the case when (44) holds. We formalize the ideas of the
outline in a series of statements.

First, we want to formalize that the boundaries of the boundaries are
big in this refined graph setting as well, when we are on a small fiber. The
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proof uses the canonical path method, as successfully adapted to this setting
by Isaksson, Kindler and Mossel [13], and is very similar to the proof of
Lemma 6.2, with some necessary modifications due to the fact that we now
have n coordinates.

Lemma 7.3. Fix a coordinate and a pair of alternatives—for simplicity we
choose coordinate 1 and alternatives a and b, but we note that this lemma
holds in general, we do not assume anything special about these choices.

Let za,b−1 be such that B1

(
za,b−1

)
is a small fiber for B

a,b;[a:b]
1 . Then, writing

B≡B1

(
za,b−1

)
for simplicity, we have

(46) P(σ ∈ ∂(B)) ≥ γ

2nk5
P(σ ∈ B).

Proof. Let Bc= F̄
(
za,b−1

)
\B. For every (σ,σ′)∈B×Bc, we define a canonical

path from σ to σ′, which has to pass through at least one edge in ∂e(B).
Then if we show that every edge in ∂e(B) lies on at most r canonical paths,
then it follows that

∣∣∂e(B)
∣∣≥|B||Bc|/r.

So let (σ,σ′)∈B×Bc. We define a path from σ to σ′ by applying a path
construction in each coordinate one by one, and then concatenating these
paths: first in the first coordinate we get from σ1 to σ′1, while leaving all
other coordinates unchanged, then in the second coordinate we get from σ2

to σ′2, while leaving all other coordinates unchanged, and so on, finally in the
last coordinate we get from σn to σ′n. In the first coordinate we apply the
path construction of [13, Proposition 6.4.], but considering the block formed
by a and b as a single element; in all other coordinates we apply the path
construction of [13, Proposition 6.6.]. Since this path goes from σ (which is
in B) to σ′ (which is in Bc), it must pass through at least one edge in ∂e(B).

For a given edge (π,π′)∈∂e(B), at most how many possible (σ,σ′)∈B×Bc

pairs are there such that the canonical path between σ and σ′ defined above
passes through (π,π′)? Let us differentiate two cases.

Suppose π and π′ differ in the first coordinate. Then coordinates 2
through n of σ must agree with the respective coordinates of π, while co-
ordinates 2 through n of σ′ can be anything (up to the restriction given

by σ′ ∈ Bc ⊆ F̄
(
za,b−1

)
), giving

(
k!
2

)n−1
possibilities. Now fixing all coordi-

nates except the first, [13, Proposition 6.4.] tells us that there are at most
(k−1)2(k−1)!/2<k2(k−1)! possibilities for the pair (σ1,σ

′
1). So altogether

there are at most k2(k−1)!
(
k!
2

)n−1
paths that pass through a given edge in

∂e(B) in this case.
Suppose now that π and π′ differ in the ith coordinate, i 6= 1. Then the

first i− 1 coordinates of σ′ must agree with the first i− 1 coordinates of
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π, while coordinates i+1, . . . ,n of σ must agree with the respective coordi-
nates of π. The first i− 1 coordinates of σ, and coordinates i+ 1, . . . ,n of

σ′ can be anything (up to the restriction given by σ,σ′ ∈ F̄
(
za,b−1

)
), giving

(k−1)!
(
k!
2

)n−2
possibilities. Now fixing all coordinates except the ith coor-

dinate, [13, Proposition 6.6.] tells us that there are at most k4k! possibilities

for the pair (σi,σ
′
i). So altogether there are at most 2k4(k−1)!

(
k!
2

)n−1
paths

that pass through a given edge in ∂e(B) in this case.

So in any case, there are at most 2k4(k − 1)!
(
k!
2

)n−1
paths that pass

through a given edge in ∂e(B).

Recall that
∣∣∣F̄ (za,b−1

)∣∣∣= (k−1)!
(
k!
2

)n−1
, and also |Bc| ≥ γ(k−1)!

(
k!
2

)n−1

since B is a small fiber. Therefore∣∣∂e(B)
∣∣ ≥ |B||Bc|

2k4(k − 1)!
(
k!
2

)n−1 ≥
γ

2k4
|B|.

Now in G
(
za,b−1

)
every ranking profile has no more than nk neighbors, which

implies (46).

Corollary 7.4. If (44) holds, then

P

σ ∈ ⋃
za,b−1

∂
(
B1

(
za,b−1

)) ≥ γε

2n2k12
.

Proof. Using the previous lemma and (44) we have

P

σ ∈ ⋃
za,b−1

∂
(
B1

(
za,b−1

)) =
∑
za,b−1

P
(
σ ∈ ∂

(
B1

(
za,b−1

)))
≥

∑
za,b−1 : B1

(
za,b−1

)
⊆Sm

(
B
a,b;[a:b]
1

)P
(
σ ∈ ∂

(
B1

(
za,b−1

)))
≥

∑
za,b−1 : B1

(
za,b−1

)
⊆Sm

(
B
a,b;[a:b]
1

) γ

2nk5
P
(
σ ∈ B1

(
za,b
))

=
γ

2nk5
P
(
σ ∈ Sm

(
Ba,b

1

))
≥ γε

2n2k12
.

Next, we want to find manipulation points on the boundaries of bound-
aries.



368 ELCHANAN MOSSEL, MIKLÓS Z. RÁCZ

Before we do this, let us divide the boundaries of the boundaries accord-

ing to which direction they are in. If σ∈∂
(
B1

(
za,b−1

))
for some za,b−1, then we

know that there exists a ranking profile π such that (σ,π)∈ ∂e
(
B1

(
za,b−1

))
.

We know that σ and π differ in exactly one coordinate, say coordinate j; in

this case we say that σ is on the boundary of B1

(
za,b−1

)
in direction j, and

we write σ∈∂j
(
B1

(
za,b−1

))
. (This notation should not be confused with that

of the edge boundary.)

We can write the boundary of B1

(
za,b−1

)
as a union of boundaries in the

different directions:

∂
(
B1

(
za,b−1

))
= ∪nj=1∂j

(
B1

(
za,b−1

))
,

but note that this is not (necessarily) a disjoint union, as a ranking profile σ

for which σ∈∂
(
B1

(
za,b−1

))
might lie on the boundary in multiple directions.

In particular, we differentiate between the boundary in direction 1 and
the boundary in all other directions. To this end we introduce the notation

∂−1

(
B1

(
xa,b−1

))
:= ∪nj=2∂j

(
B1

(
xa,b−1

))
.

With this notation we have the following corollary of Corollary 7.4.

Corollary 7.5. If (44) holds, then either

(47) P
(
σ ∈ ∪

za,b−1
∂−1

(
B1

(
za,b−1

)))
≥ γε

4n2k12

or

(48) P
(
σ ∈ ∪

za,b−1
∂1

(
B1

(
za,b−1

)))
≥ γε

4n2k12
.

Lemma 7.6. Suppose the ranking profile σ is on the boundary of a fiber

for B
a,b;[a:b]
1 in direction j 6=1, i.e.,

σ ∈ ∪
za,b−1

∂−1

(
B1

(
za,b−1

))
.

Then there exists a 3-manipulation point σ̂ which agrees with σ in all coor-
dinates except perhaps coordinate 1 and some coordinate j 6=1; furthermore
σ̂1 is equal to σ1 or [a :b]σ1, except that the position of a third alternative c
might be shifted arbitrarily, and σ̂j is equal to σj or zσj for some adjacent
transposition z∈T , except the position of b might be shifted arbitrarily.
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Proof. Suppose xa,b−1(σ) = za,b−1. Since σ ∈ ∂
(
B1

(
za,b−1

))
⊆B1

(
za,b−1

)
, we know

that f(σ)=a, and if σ′=[a :b]1σ, then f(σ′)=b.
Let π = (πj ,σ−j) denote the ranking profile such that (σ,π) ∈

∂e

(
B1

(
za,b−1

))
. Let π′ := [a : b]1π. Since π /∈ B1

(
za,b−1

)
,
(
f(π),f(π′)

)
6= (a,b).

Then, by Lemma 5.1, if f(π) 6=f(π′), then one of π and π′ is a 2-manipulation
point.

So let us suppose that f(π) = f(π′). If f(π′) = a, then one of σ′ and π′

is a 2-manipulation point by Lemma 5.1, since π′= zjσ
′ for some adjacent

transposition z 6= [a : b]. If f(π) = b, then similarly one of σ and π is a
2-manipulation point.

Finally let us suppose that f(π) = c for some c /∈ {a,b}. In this case
Lemma 5.2 tells us that there exists an appropriate 3-manipulation point
σ̂.

Corollary 7.7. If (47) holds, then

(49) P(σ ∈M3) ≥ γε

8n3k16
.

Proof. Lemma 7.6 tells us that for every ranking profile σ which is on

the boundary of a fiber for B
a,b;[a:b]
1 in some direction j 6= 1, there is a 3-

manipulation point σ̂ “nearby”; the lemma specifies what “nearby” means.
How many ranking profiles σ may give the same σ̂? At most 2nk4, which

comes from the following: σ and σ̂ agree in all coordinates except maybe
two, one of which is the first coordinate; there are n− 1 < n possibilities
for the other coordinate; in the first coordinate, σ̂1 is either σ1 or [a : b]σ1

(giving 2 possibilities), while some alternative c (k−2<k possibilities) might
be shifted arbitrarily (at most k possibilities); in the other coordinate j 6=1,
σ̂j is equal to σj or zσj for some adjacent transposition z ∈ T (at most k
possibilities), except b might be shifted arbitrarily (k possibilities).

So putting this result from Lemma 7.6 together with (47) yields (49).

The remaining case we have to deal with is when (48) holds.

Lemma 7.8. Suppose the ranking profile σ is on the boundary of a fiber

for B
a,b;[a:b]
1 in direction 1, i.e.,

σ ∈ ∪
za,b−1

∂1

(
B1

(
za,b−1

))
.

Then either σ ∈ LD1(a,b), or there exists a 3-manipulation point σ̂ which
agrees with σ in all coordinates except perhaps in coordinate 1; furthermore
σ̂1 is equal to σ1, or [a :b]σ1 except that the position of a third alternative c
might be shifted arbitrarily.
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Proof. Just like the proof of Lemma 6.4.

The following corollary then tells us that either we have found many 3-
manipulation points, or we have many local dictators on three alternatives
in coordinate 1.

Corollary 7.9. Suppose (48) holds. Then either

(50)
∑

c/∈{a,b}

P
(
σ ∈ LD

{a,b,c}
1

)
= P

(
σ ∈ LD1(a, b)

)
≥ γε

8n2k12

or

P(σ ∈M3) ≥ γε

16n2k14
.

7.2.1. Dealing with local dictators. So the remaining case we have to
deal with in this small fiber case is when (50) holds, i.e., we have many local
dictators in coordinate 1.

Lemma 7.10. Suppose σ∈LD
{a,b,c}
1 for some alternative c /∈{a,b}. Define

σ′ :=(σ′1,σ−1) by letting σ′1 be equal to σ1 except that the block of a, b and
c is moved to the top of the coordinate. Then

• either σ′∈LD
{a,b,c}
1 ,

• or there exists a 3-manipulation point σ̂ which agrees with σ in all co-
ordinates except perhaps in coordinate 1; furthermore σ̂1 is equal to σ1

except that the position of a, b and c might be shifted arbitrarily.

Proof. Just like the proof of Lemma 6.6.

Corollary 7.11. If (50) holds, then either

(51)
∑

c/∈{a,b}

P
(
σ ∈ LD{a,b,c}1 , {σ1(1), σ1(2), σ1(3)} = {a, b, c}

)
≥ γε

16n2k13

or

P(σ ∈M3) ≥ γε

16n2k15
.

Proof. Just like the proof of Corollary 6.7.

Now (51) is equivalent to

(52)
∑

c/∈{a,b}

P
(
σ ∈ LD{a,b,c}1 ,

(
σ1(1), σ1(2), σ1(3)

)
= (a, b, c)

)
≥ γε

96n2k13
.
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We know that

P
((
σ1(1), σ1(2), σ1(3)

)
= (a, b, c)

)
=

1

k(k − 1)(k − 2)
≤ 6

k3
,

and so (52) implies (recall Definition 21)

(53)
∑

c/∈{a,b}

P(a,b,c)
1

(
σ ∈ LD{a,b,c}1

)
≥ γε

576n2k10
.

Now fix an alternative c /∈ {a,b} and define the graph G(a,b,c) =(
V(a,b,c),E(a,b,c)

)
to have vertex set

V(a,b,c) :=
{
σ ∈ Snk :

(
σ1(1), σ1(2), σ1(3)

)
= (a, b, c)

}
and for σ,π ∈ V(a,b,c) let (σ,π) ∈ E(a,b,c) if and only if σ and π differ in
exactly one coordinate, and by an adjacent transposition in this coordinate.
So G(a,b,c) is the subgraph of the refined rankings graph induced by the
vertex set V(a,b,c).

Let
T1(a, b, c) := V(a,b,c) ∩ LD

{a,b,c}
1 ,

and let ∂e
(
T1(a,b,c)

)
and ∂

(
T1(a,b,c)

)
denote the edge and vertex boundary

of T1(a,b,c) in G(a,b,c), respectively.
The next lemma shows that unless T1(a,b,c) is almost all of V(a,b,c), the

size of the boundary ∂
(
T1(a,b,c)

)
is comparable to the size of T1(a,b,c).

Lemma 7.12. Let c /∈{a,b} be arbitrary. Write T ≡T1(a,b,c) for simplicity.

If P(a,b,c)
1 (σ∈T )≤1−δ, then

(54) P(a,b,c)
1

(
σ ∈ ∂(T )

)
≥ δ

nk3
P(a,b,c)

1 (σ ∈ T ).

Proof. The proof is essentially the same as the proof of Lemma 6.8, with a
slight modification to deal with n coordinates. Let T c=V(a,b,c)\T (a,b,c). For
every (σ,σ′)∈ T ×T c we define a canonical path from σ to σ′ by applying
a path construction in each coordinate one by one, and then concatenat-
ing these paths. In all coordinates we apply the path construction of [13,
Proposition 6.4.], but in the first coordinate we only apply it to alternatives
[k]\{a,b,c}.

The analysis of this construction is done in exactly the same way as in
Lemma 7.3; in the end we get that |∂e(T )| ≥ δ

k2
|T |. Now every vertex in

V(a,b,c) has no more than nk neighbors, which implies (54).



372 ELCHANAN MOSSEL, MIKLÓS Z. RÁCZ

The next lemma tells us that if σ is on the boundary of a set of local
dictators on {a,b,c} for some alternative c /∈ {a,b} in coordinate 1, then
there is a 4-manipulation point σ̂ which is close to σ. The proof is similar
to that of Lemma 6.9, but we have to take care of all n coordinates.

Lemma 7.13. Suppose σ∈∂
(
T1(a,b,c)

)
for some c /∈{a,b}. We distinguish

two cases, based on the number of alternatives.
If k= 3, then there exists a (3-)manipulation point σ̂ which differs from

σ in at most two coordinates, one of them being the first coordinate.
If k≥4, then there exists a 4-manipulation point σ̂ which differs from σ in

at most two coordinates, one of them being the first coordinate; furthermore,
σ̂1 is equal to σ1 except that the order of the block of a, b and c might be
rearranged and an additional alternative d might be shifted arbitrarily; and
in the other coordinate, call it j, σ̂j is equal to σj except perhaps a, b and
c are shifted arbitrarily.

Proof. Let π be the ranking profile such that (σ,π)∈∂e
(
T1(a,b,c)

)
, let j be

the coordinate in which they differ, and let z be the adjacent transposition in
which they differ, i.e., π=zjσ. Since π /∈T1(a,b,c), there exists a reordering
of the block of a, b, and c at the top of π1 such that the outcome of f is not
the top ranked alternative in coordinate 1. Call the resulting vector π′1, and
let π′ := (π′1,π−1). W.l.o.g. let us assume that π′1(1) = a. Let us also define
σ′ :=zjπ

′. We distinguish two cases: j=1 and j 6=1.
If j=1 (in which case we must have k≥5), π′ is a 2-manipulation point,

since f(σ′)=a.
If j 6=1, then there are various cases to consider. If the adjacent transpo-

sition z does not move a, then either π′ or σ′ is a 2-manipulation point. So
let us suppose that z=[a :d] for some d 6=a.

Clearly we must have f(π′)=d, or else π′ or σ′ is a 2-manipulation point.
Suppose first that d∈{b,c}. W.l.o.g. suppose that d=b.

Then take alternative c in coordinate j of both σ′ and π′, and bubble it to
the block of a and b simultaneously in the two ranking profiles. If along the
way the value of the outcome of the SCF f changes from a or b, respectively,
then we have a 2-manipulation point by Lemma 5.1. Otherwise, we now have
a, b, and c adjacent in both coordinates 1 and j. Now rearranging the order
of the blocks of a, b, and c in these two coordinates (which can be done using
adjacent transpositions), we either get a 2-manipulation point by Lemma 5.1,
or we can define a new SCF on two voters and three alternatives, a, b, and
c. This SCF takes on three values and it is also not hard to see that the
outcome is not only a function of the first coordinate, so by the Gibbard-
Satterthwaite theorem we know that this SCF has a manipulation point,
which is a 3-manipulation point of the original SCF f .
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Now let us look at the case when d /∈{b,c}. In this case we do something
similar to what we just did in the previous paragraph. In both σ′ and π′,
first bubble up alternative d in coordinate 1 up to the block of a, b, and
c, and then bubble b and c in coordinate j to the block of a and d. All of
this using adjacent transpositions. If the value of the outcome of the SCF f
changes from a or d, respectively, at any time along the way, then we have
a 2-manipulation point by Lemma 5.1. Otherwise, we now have a, b, c and
d adjacent in both coordinates 1 and j, and we can apply the same trick to
find a 4-manipulation point, using the Gibbard-Satterthwaite theorem.

The next corollary puts together Corollary 7.11 and Lemmas 7.12
and 7.13.

Corollary 7.14. Suppose (51) holds. Then if for every c /∈ {a,b} we have

P(a,b,c)
1

(
σ∈T1(a,b,c)

)
≤1− ε

100k , then

P(σ ∈M4) ≥ γε2

345600n4k22
.

Proof. We know that (51) implies∑
c/∈{a,b}

Pa,b,c1

(
σ ∈ T1(a, b, c)

)
≥ γε

576n2k10
.

Now then using the assumptions, Lemma 7.12 with δ= ε
100k and Lemma 7.13,

we have

P(σ ∈M4) ≥
∑

c6={a,b}

1

k3
P(a,b,c)

1 (σ ∈M4)

≥
∑

c/∈{a,b}

1

6nk8
P(a,b,c)

1

(
σ ∈ ∂

(
T1(a, b, c)

))
≥

∑
c/∈{a,b}

ε

600n2k12
P(a,b,c)

1

(
σ ∈ T1(a, b, c)

)
≥ γε2

345600n4k22
.

So again we are left with one case to deal with: if there exists an alter-

native c /∈ {a,b} such that P(a,b,c)
1

(
σ ∈ T1(a,b,c)

)
> 1− ε

100k . Define a subset
of alternatives K⊆ [k] in the following way:

K := {a, b} ∪
{
c ∈ [k] \ {a, b} : P(a,b,c)

1

(
σ ∈ T1(a, b, c)

)
> 1− ε

100k

}
.
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In addition to a and b, K contains those alternatives that whenever they
are at the top of coordinate 1 with a and b, they form a local dictator with
high probability.

So our assumption now is that |K|≥3.
Our next step is to show that unless we have many manipulation points,

for any alternative c ∈ K, conditioned on c being at the top of the first
coordinate, the outcome of f is c with probability close to 1.

Lemma 7.15. Let c∈K. Then either

(55) P(c)
1

(
f(σ) = c

)
≥ 1− ε

50k
,

or

(56) P(σ ∈M2) ≥ ε

100k4
.

Proof. Just like the proof of Lemma 6.11.

We now deal with alternatives that are not in K: either we have many
manipulation points, or for any alternative d /∈K, the outcome of f is not d
with probability close to 1.

Lemma 7.16. Let d /∈K. If P
(
f(σ)=d

)
≥ ε

4k , then

P(σ ∈M4) ≥ ε2

106n2k13
.

Proof. The proof is very similar to that of Lemma 6.12: we do the same
steps in the first coordinate as done in the proof of Lemma 6.12, and the
fact that we have n coordinates only matters at the very end.

Let σ be such that f(σ)=d. We will keep coordinates 2 through n to be
fixed as σ−1 throughout the proof. By bubbling alternatives d, a, and b in
the first coordinate, we can define σ′, σ(d,b,a), σ(d,a,b), σ(a,b,d), σ(a,d,b), σ(b,a,d),
and σ(b,d,a) just as in the proof of Lemma 6.12. Again, we can show that
either

P(σ ∈M2) ≥ ε

1600k3
,

in which case we are done, or

(57) P(a,b,d)
1

(
σ(a,b,d) ∈ LD{a,b,d}1

)
= P

(
σ : σ(a,b,d) ∈ LD{a,b,d}1

)
≥ ε

1600k
.

Define G(a,b,d) and T(a,b,d) analogously to G(a,b,c) and T(a,b,c), respectively.
Suppose that (57) holds. We also know that d /∈K, so Lemma 7.12 applies,

and then Lemma 7.13 shows us how to find manipulation points. We can



A QUANTITATIVE GIBBARD-SATTERTHWAITE THEOREM 375

put these arguments together, just like in the proof of Corollary 7.14, to
show what we need:

P(σ ∈M4) ≥ 1

k3
P(a,b,d)

1 (σ ∈M4) ≥ 1

6nk8
P(a,b,d)

1

(
σ ∈ ∂

(
T1(a, b, d)

))
≥ ε

600n2k12
P(a,b,d)

1

(
σ ∈ T1(a, b, d)

)
≥ ε2

106n2k13
.

Putting together the results of the previous lemmas, there is only one case
to be covered, which is covered by the following final lemma. Basically, this
lemma says that unless there are enough manipulation points, our function
is close to a dictator in the first coordinate, on the subset of alternatives K.

Lemma 7.17. Recall that we assume that D
(
f,NONMANIP

)
≥ε. Further-

more assume that |K|≥3, for every c∈K we have

(58) P(c)
1

(
f(σ) = c

)
≥ 1− ε

50k
,

and for every d /∈K we have

P
(
f(σ) = d

)
≤ ε

4k
.

Then

(59) P(σ ∈M2) ≥ ε

4k2
.

Proof. Just like the proof of Lemma 6.13.

To conclude the proof in the small fiber case, inspect all the lower bounds

for P(σ∈M4) obtained in Section 7.2, and recall that γ= ε3

103n3k24
.

7.3. Large fiber case

We now deal with the large fiber case, when (45) holds for both boundaries,
i.e., when

P
(
σ ∈ Lg

(
B
a,b;[a:b]
1

))
≥ ε

nk7

and

P
(
σ ∈ Lg

(
B
c,d;[c:d]
2

))
≥ ε

nk7
.

We differentiate between two cases: whether d∈{a,b} or d /∈{a,b}.
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7.3.1. Case 1. Suppose d∈ {a,b}, in which case w.l.o.g. we may assume
that d=a. That is, in the rest of this case we may assume that

(60) P
(
σ ∈ Lg

(
B
a,b;[a:b]
1

))
≥ ε

nk7

and

(61) P
(
σ ∈ Lg

(
B
a,c;[a:c]
2

))
≥ ε

nk7
.

First, let us look at only the boundary between a and b in direction 1.

Let us fix a vector za,b−1 which gives a large fiber B1

(
za,b−1

)
for the boundary

B
a,b;[a:b]
1 , i.e., we know that

(62) P
(
σ ∈ B1

(
za,b−1

)
| σ ∈ F̄

(
za,b−1

))
≥ 1− γ.

Our basic goal in the following will be to show that conditional on the

ranking profile σ being in the fiber F
(
za,b−1

)
(but not necessarily in F̄

(
za,b−1

)
),

with high probability the outcome of the vote is top{a,b}(σ1), or else we
have a lot of 2-manipulation points or local dictators on three alternatives
in coordinate 1.

Our first step towards this is the following.

Lemma 7.18. Suppose za,b−1 gives a large fiber B1

(
za,b−1

)
for the boundary

B
a,b;[a:b]
1 . Then

(63) P(a,b)
1

(
σ ∈ B1

(
za,b−1

)
| σ ∈ F

(
za,b−1

))
≥ 1− kγ.

Proof. We know that

P
((
σ1(1), σ1(2)

)
= (a, b) | σ ∈ F̄

(
za,b−1

))
=

1

k − 1
,

and so

P(a,b)
1

(
σ /∈B1

(
za,b−1

)
| σ∈F

(
za,b−1

))
= P(a,b)

1

(
σ /∈ B1

(
za,b−1

)
| σ ∈ F̄

(
za,b−1

))
= (k − 1)P

(
σ /∈ B1

(
za,b−1

)
,
(
σ1(1), σ1(2)

)
= (a, b) | σ ∈ F̄

(
za,b−1

))
≤ (k − 1)γ < kγ.

The next lemma formalizes our goal mentioned above.
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Lemma 7.19. Suppose za,b−1 gives a large fiber B1

(
za,b−1

)
for the boundary

B
a,b;[a:b]
1 . Then either

(64) P
(
f(σ) = top{a,b}(σ1) | σ ∈ F

(
za,b−1

))
≥ 1− 2kγ

or

(65) P
(
σ ∈M2 | σ ∈ F

(
za,b−1

))
≥ γ

2k

or

(66) P
(
σ ∈ LD1(a, b) | σ ∈ F

(
za,b−1

))
≥ γ

2k
.

Proof. The proof of this lemma is essentially the same as that of
Lemma 6.15, there are only two slight differences. First, we use Lemma 7.18

to know that (63) holds. Second, we take σ∈F
(
za,b−1

)
to be uniform, and we

stay on the fiber F
(
za,b−1

)
throughout the proof: we modify only the first co-

ordinate throughout the proof, in the same way as we did for Lemma 6.15.
We omit the details.

Now this lemma holds for all vectors za,b−1 which give a large fiber B1

(
za,b−1

)
for the boundary B

a,b;[a:b]
1 . By (60) we know that

P
(
σ : B1

(
xa,b−1(σ)

)
is a large fiber

)
≥ ε

nk7
.

Now if (65) holds for at least a third of the vectors za,b−1 that give a large

fiber B1

(
za,b−1

)
, then it follows that

P(σ ∈M2) ≥ γε

6nk8

and we are done. If (66) holds for at least a third of the vectors za,b−1 that

give a large fiber B1

(
za,b−1

)
, then similarly we have

P
(
σ ∈ LD1(a, b)

)
≥ γε

6nk8
,

which means that (50) also holds, and so we are done by the argument in
Section 7.2.1.

So the remaining case to consider is when (64) holds for at least a third

of the vectors za,b−1 that give a large fiber B1

(
za,b−1

)
.
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We can go through this same argument for the boundary between a and
c in direction 2 as well, and either we are done because

P(σ ∈M2) ≥ γε

6nk8

or

P
(
σ ∈ LD2(a, c)

)
≥ γε

6nk8
,

or for at least a third of the vectors za,c−2 that give a large fiber B2

(
za,c−2

)
we

have

P
(
f(σ) = top{a,c}(σ2) | σ ∈ F

(
za,c−2

))
≥ 1− 2kγ.

So basically our final case is if

(67) P
(
σ ∈ F a,b1

)
≥ ε

3nk7

and also

(68) P
(
σ ∈ F a,c2

)
≥ ε

3nk7
.

Notice that being in the set F a,b1 only depends on the vector xa,b(σ) of
preferences between a and b, and similarly being in the set F a,c2 only de-
pends on the vector xa,c(σ) of preferences between a and c. We know

that
{(
xa,bi (σ),xa,ci (σ)

)}n
i=1

are independent, and for any given i we know

that
∣∣∣E(xa,bi (σ)xa,ci (σ)

)∣∣∣= 1
3 . Hence we can apply reverse hypercontractivity

(Lemma 2.3), to get the following result.

Lemma 7.20. If (67) and (68) hold, then also

(69) P
(
σ ∈ F a,b1 ∩ F a,c2

)
≥ ε3

27n3k21
.

Proof. See above.

The next and final lemma then concludes that we have lots of manipu-
lation points.

Lemma 7.21. Suppose (69) holds. Then

(70) P(σ ∈M3) ≥ ε3

54n3k27
− 9γ

k3
.
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Proof. First let us define two events:

I1 :=
{
σ : f(σ) = top{a,b}(σ1)

}
I2 :=

{
σ : f(σ) = top{a,c}(σ2)

}
.

Using similar estimates as previously in Lemma 3.3, we have

P
(
σ ∈ I1 ∩ I2 ∩ F a,b1 ∩ F a,c2

)
≥ P

(
σ ∈ F a,b1 ∩ F a,c2

)
− P

(
σ /∈ I1, σ ∈ F a,b1 ∩ F a,c2

)
− P

(
σ /∈ I2, σ ∈ F a,b1 ∩ F a,c2

)
.

The first term is bounded below via (69), while the other two terms can be

bounded using the definition of F a,b1 and F a,c2 , respectively:

P
(
σ /∈I1, σ∈F a,b1 ∩ F a,c2

)
≤ P

(
σ /∈I1, σ∈F a,b1

)
≤ P

(
σ /∈ I1 | σ ∈ F a,b1

)
≤ 2kγ,

and similarly for the other term. Putting everything together gives us

P
(
σ ∈ I1 ∩ I2 ∩ F a,b1 ∩ F a,c2

)
≥ ε3

27n3k21
− 4kγ.

If σ∈I1∩I2∩F a,b1 ∩F
a,c
2 , then clearly we must have f(σ)=a, and therefore

xa,b1 (σ) = 1 and xa,c2 (σ) = 1. Now define σ′ from σ by bubbling up b in
coordinate 1 to just below a, and bubbling up c in coordinate 2 to just
below a. Either we encounter a 2-manipulation point along the way, or the
outcome is still a: f(σ′) = a. If we encounter a 2-manipulation point along
the way for at least half of such ranking profiles, then we are done:

P(σ ∈M2) ≥ 1

k2

(
ε3

54n3k21
− 2kγ

)
=

ε3

54n3k23
− 2γ

k
.

Otherwise, we may assume that

P
(
σ ∈ I1 ∩ I2 ∩ F a,b1 ∩ F a,c2 , f(σ′) = a

)
≥ ε3

54n3k21
− 2kγ.

In this case define σ̃′ := [a : b]1σ
′ and σ̃′′ := [a : c]2σ

′. If f
(
σ̃′
)
/∈ {a,b}

or f
(
σ̃′′
)
/∈ {a,c}, then we automatically have that one of σ′, σ̃′, σ̃′′ is a 2-

manipulation point. If f
(
σ̃′
)

= b and f
(
σ̃′′
)

= c, then by Lemma 5.2 we
know that there exists a 3-manipulation point σ̂ which agrees with σ except
perhaps a, b, and c could be arbitrarily shifted in the first two coordinates.
The final case is when a∈

{
f
(
σ̃′
)
,f
(
σ̃′′
)}

. But we now show that this has
small probability, and therefore (70) follows.
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First let us look at the case of f
(
σ̃′
)

=a. We have

P
(
σ ∈ I1 ∩ I2 ∩ F a,b1 ∩ F a,c2 , f(σ′) = a, f

(
σ̃′
)

= a
)

=
∑

za,b−1 : F
(
za,b−1

)
⊆Fa,b1

P
(
σ ∈ I1∩I2∩F

((
1, za,b−1

))
∩F a,c2 , f(σ′)=a, f

(
σ̃′
)
=a
)

=
∑

za,b−1 : F
(
za,b−1

)
⊆Fa,b1

P
(
σ ∈ I1∩I2∩F a,c2 , f(σ′) = a, f

(
σ̃′
)
=a | σ∈F

((
1, za,b−1

)))
·

· P
(
σ ∈ F

((
1, za,b−1

)))
≤

∑
za,b−1 : F

(
za,b−1

)
⊆Fa,b1

P
(
σ : f

(
σ̃′
)

= a | σ ∈ F
((

1, za,b−1

)))
P
(
σ ∈ F

((
1, za,b−1

)))
.

Now we know that σ̃′∈F
((
−1,za,b−1

))
⊆F a,b1 , and we also know that

P
(
f(σ) 6= b | σ ∈ F

((
−1, za,b−1

)))
≤ 4kγ.

The number of σ’s that give the same σ̃′ is at most k2, and so we can
conclude that

P
(
σ ∈ I1 ∩ I2 ∩ F a,b1 ∩ F a,c2 , f(σ′) = a, f

(
σ̃′
)

= a
)
≤ 4k3γ,

and similarly

P
(
σ ∈ I1 ∩ I2 ∩ F a,b1 ∩ F a,c2 , f(σ′) = a, f

(
σ̃′′
)

= a
)
≤ 4k3γ,

which shows that

P(σ ∈M3) ≥ 1

k6

(
ε3

54n3k21
− 2kγ − 8k3γ

)
≥ ε3

54n3k27
− 9γ

k3
.

To conclude the proof in this case, recall that we have chosen γ= ε3

103n3k24
.

7.3.2. Case 2. First, as in the previous case, we can look at simply the
boundary between a and b in direction 1, and conclude that either there are
many manipulation points, or there are many local dictators, or (67) holds.
This holds similarly for the boundary between c and d in direction 2. Finally,
just as in Section 3.3.2, we can show that (67) and (68) cannot hold at the
same time. We omit the details.
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7.4. Proof of Theorem 7.1 concluded

Proof of Theorem 7.1.
Our starting point is Lemma 5.3, which directly implies Lemma 7.2 (un-

less there are many 2-manipulation points, in which case we are done). We
then consider two cases, as indicated in Section 7.1.

We deal with the small fiber case in Section 7.2. First, Lemmas 7.3, 7.6,
and 7.8, and Corollaries 7.4, 7.5, 7.7, and 7.9 imply that either there are
many 3-manipulation points, or there are many local dictators on three
alternatives in coordinate 1. We then deal with the case of many local dic-
tators in Section 7.2.1. Lemma 7.10, Corollary 7.11, Lemmas 7.12, 7.13,
Corollary 7.14, and Lemmas 7.15, 7.16, and 7.17 together show that there
are many 4-manipulation points if there are many local dictators on three
alternatives, and the SCF is ε-far from the family of nonmanipulable func-
tions.

We deal with the large fiber case in Section 7.3. Here Lemmas 7.18, 7.19,
7.20, and 7.21 show that if there are not many local dictators on three
alternatives, then there are many 3-manipulation points. In the case when
there are many local dictators, we refer back to Section 7.2.1 to conclude
the proof.

8. Reduction to distance from truly nonmanipulable SCFs

Proof of Theorem 1.5. Our assumption means that there exists a SCF
g∈NONMANIP such that D(f,g)≤α. We distinguish two cases: either g is
a function of one coordinate, or g takes on at most two values.

Case 1. g is a function of one coordinate. In this case we can assume
w.l.o.g. that g is a function of the first coordinate, i.e., there exists a SCF
h : Sk→ [k] on one coordinate such that for every ranking profile σ, we have
g(σ)=h(σ1).

We know from the quantitative Gibbard-Satterthwaite theorem for one
voter that for any β either D

(
h,NONMANIP(1,k)

)
≤β, or P

(
σ∈M3(h)

)
≥

β3

105k16
.

In the former case, we have that

D
(
g,NONMANIP(n, k)

)
≤ D

(
h,NONMANIP(1, k)

)
≤ β,

and so consequently

D
(
f,NONMANIP(n, k)

)
≤ α+ β.
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In the latter case, we have that

P
(
σ ∈M3(g)

)
= P

(
σ ∈M3(h)

)
≥ β3

105k16
,

and so consequently

P
(
σ ∈M3(f)

)
≥ β3

105k16
− 6nkα,

since changing the outcome of a SCF at one ranking profile can change
the number of 3-manipulation points by at most 6nk. Now choosing β =
100nk6α1/3 shows that either (3) or (4) holds.

Case 2. g is a function which takes on at most two values. W.l.o.g.
we may assume that the range of g is {a,b}⊂ [k], i.e., for every ranking profile
σ∈Snk we have g(σ)∈{a,b}.

There is one thing we have to be careful about: even though g takes on
at most two values, it is not necessarily a Boolean function, since the value
of g(σ) does not necessarily depend only on the Boolean vector xa,b(σ).

We now define a function h : Snk→{a,b} that is close in some sense to g
and which can be viewed as a Boolean function h : {a,b}n→{a,b} because
h(σ) depends on σ only through xa,b(σ). (The vector xa,b(σ) ∈ {−1,1}n
encodes which of a and b is preferred in each coordinate, and a vector in
{a,b}n can encode the same information.) For a given ranking profile σ, let us
consider the fiber on which it is on, F

(
xa,b(σ)

)
, and let us define g|

F
(
xa,b(σ)

)
to be the restriction of g to ranking profiles in the fiber F

(
xa,b(σ)

)
. Then

define (see Definition 22)

h(σ) := Maj
(
g|
F
(
xa,b(σ)

)).
By definition, h(σ) depends on σ only through xa,b(σ), so we may also view
h as a Boolean function h : {a,b}n→{a,b}.

For any given 0<δ<1, we either have D(g,h)≤δ, in which case D(f,h)≤
α+δ, or if D(g,h)>δ, then we show presently that

(71) P
(
σ ∈M2(f)

)
≥ δ

4nk5
− nkα.

Choosing δ=8n2k6α then shows that either (4) holds, or D(f,h)≤9n2k6α.
Let us now show (71). We use a canonical path argument again, but

first we divide the ranking profiles according to the fibers with respect to
preference between a and b.
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Let us consider an arbitrary fiber F
(
za,b
)
, and divide it into two disjoint

sets: into those ranking profiles for which the outcome of g and h agree, and
those for which these outcomes are different. I.e.,

F
(
za,b
)

= Fmaj
(
za,b
)
∪ Fmin

(
za,b
)
,

where

Fmaj
(
za,b
)

=
{
σ ∈ F

(
za,b
)

: g(σ) = h(σ)
}
,

Fmin
(
za,b
)

=
{
σ ∈ F

(
za,b
)

: g(σ) 6= h(σ)
}
.

By construction, we know that∣∣∣Fmin
(
za,b
)∣∣∣ ≤ 1

2

∣∣∣F (za,b)∣∣∣ =
1

2

(
k!

2

)n
.

Now for every pair of profiles (σ,σ′)∈Fmin
(
za,b
)
×Fmaj

(
za,b
)

define a canon-
ical path from σ to σ′ by applying a path construction in each coordinate
one by one, and then concatenating these paths. In each coordinate we ap-
ply the path construction of [13, Proposition 6.6.]: we bubble up everything
except a and b, and then finally bubble up the last two alternatives as well.

For a given edge (π,π′) ∈ Fmin
(
za,b
)
× Fmaj

(
za,b
)

there are at most

2k4
(
k!
2

)n
possible pairs (σ,σ′)∈Fmin

(
za,b
)
×Fmaj

(
za,b
)

such that the canon-
ical path between σ and σ′ defined above passes through (π,π′). (This can
be shown just like in the previous lemmas, e.g., Lemma 7.3.) Consequently
we have

∣∣∣∂e (Fmin
(
za,b
))∣∣∣ ≥ ∣∣Fmin

(
za,b
)∣∣ ∣∣Fmaj

(
za,b
)∣∣

2k4
(
k!
2

)n ≥

∣∣∣Fmin
(
za,b
)∣∣∣

4k4
,

where the edge boundary ∂e
(
Fmin

(
za,b
))

is defined via the refined rankings

graph restricted to the fiber F
(
za,b
)
. Summing this over all fibers we have

that

(72)
∑
za,b

∣∣∣∂e(Fmin
(
za,b
))∣∣∣ ≥∑

za,b

∣∣∣Fmin
(
za,b
)∣∣∣

4k4
≥ δ

4k4
(k!)n,

using the fact that D(g,h)>δ.
Now it is easy to see that if (σ,σ′)∈ ∂e

(
Fmin

(
za,b
))

for some za,b, then
either σ or σ′ is a 2-manipulation point for g. In the refined rankings
graph every vertex (ranking profile) has n(k− 1) < nk neighbors, so each
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2-manipulation point can be counted at most nk times in the sum on the
left hand side of (72), showing that

P
(
σ ∈M2(g)

)
≥ δ

4nk5
,

from which (71) follows immediately, since changing the outcome of a SCF
at one ranking profile can change the number of 2-manipulation points by
at most nk.

So either we are done because (4) holds, or D(f,h)≤ 9n2k6α; suppose
the latter case. Our final step is to look at h as a Boolean function, and use
a result on testing monotonicity [11].

Denote by D̃ the distance of h when viewed as a Boolean function from
the set of monotone Boolean functions. Let 0 < ε < 1 be arbitrary. Then
either D̃ ≤ ε, in which case D

(
h,NONMANIP

)
≤ D̃ ≤ ε and therefore

D(f,NONMANIP)≤ 9n2k6α+ε, or D̃>ε. In the latter case we show that
then

(73) P
(
σ ∈M2(f)

)
≥ 2ε

nk
− 9n3k7α.

Choosing ε=5n4k8α then shows that either (3) or (4) holds.
Let us now show (73). Let us view h as a Boolean function, and denote

by p(h) the fraction of pairs of strings, differing on one coordinate, that
violate the monotonicity condition. Goldreich, Goldwasser, Lehman, Ron,

and Samorodnitsky showed in [11, Theorem 2] that p(h)≥ D̃
n .

Now going back to viewing h as a SCF on k alternatives, this tells us that
there are at least ε

22n pairs of fibers, which differ on one coordinate, that
violate monotonicity. For each such pair of fibers, whenever a and b are ad-
jacent in the coordinate where the two fibers differ, we get a 2-manipulation
point. Such a 2-manipulation point can be counted at most n times in this
way (since there are n coordinates where a and b can be adjacent). Conse-
quently, we have

|M2(h)| ≥ ε

2
· 2n · 2(k − 1)!

(
k!

2

)n−1

· 1

n
=

2ε

nk
(k!)n,

i.e.,

P
(
σ ∈M2(h)

)
≥ 2ε

nk
,

from which (73) follows immediately, since changing the outcome of a SCF
at one ranking profile can change the number of 2-manipulation points by
at most nk.
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Proof of Theorem 1.2. First we argue without specific bounds. Suppose
on the contrary that our SCF f does not have many 4-manipulation points.
Then f is close to NONMANIP by Theorem 7.1. Consequently, by Theo-
rem 1.5, f is close to NONMANIP, which is a contradiction.

Now we argue with specific bounds. Assume on the contrary that

P
(
σ ∈M4(f)

)
<

ε15

1039n67k166
.

Then by Theorem 7.1 we have that D
(
f,NONMANIP

)
< ε3

106n12k24
, and

consequently by Theorem 1.5 we have D(f,NONMANIP) < ε, which is a
contradiction.

9. Open problems

We conclude with a few open problems that arise naturally, some of which
have already been asked by Isaksson, Kindler and Mossel [13].

• In Section 1.3 we mentioned that our techniques do not lead to tight
bounds. It would be interesting to find the correct tight bounds. When
discussing tight bounds there are various different ways to measure the
manipulability of a function: in terms of the probability of having manip-
ulating voters, in terms of the expected number of manipulating voters,
in terms of the number of manipulative edges (either in the refined or
non-refined graph), etc.
• A related question is to find, in some natural subsets of functions, the

one that minimizes manipulation. For example, among anonymous SCFs,
which function minimizes the expected number of manipulating voters?
For example, for plurality, the probability that a ranking profile is ma-
nipulable is Θ

(
1/
√
n
)
, and if it is manipulable, then Θ(n) voters can

manipulate, so consequently the expected value of the number of voters
who can manipulate individually is Θ

(√
n
)
. Is it true that for all anony-

mous SCFs, this expectation is Ω
(√
n
)
?

• What if the distribution over rankings is not i.i.d. uniform? It would
be interesting to consider a quantitative Gibbard-Satterthwaite theorem,
and also the questions asked above, in this setting.
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