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Beta-gamma tail asymptotics
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Abstract

We compute the tail asymptotics of the product of a beta random variable and a gener-
alized gamma random variable which are independent and have general parameters.
A special case of these asymptotics were proved and used in a recent work of Bubeck,
Mossel, and Réacz in order to determine the tail asymptotics of the maximum degree of
the preferential attachment tree. The proof presented here is simpler and highlights
why these asymptotics hold.
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1 Introduction

There has been a lot of recent interest in various urn schemes due to their appearance
in many graph growth models (see, e.g., [15, 2, 3, 16, 4, 17, 5, 9, 18]). The limiting
distributions arising in these urn schemes are often related to the beta and gamma
distributions. Consequently, the computation of various statistics in random graph
models often boils down to using algebraic properties of these distributions, commonly
referred to as the beta-gamma algebra [6].

The purpose of this note is to simplify and demystify a recent computation done in [5]
involving beta and generalized gamma random variables. Bubeck, Mossel, and Racz [5]
were interested in the influence of the seed graph in the preferential attachment model,
which led them to study the tail asymptotics of the maximum degree of the preferential
attachment tree. This, in turn, essentially reduces to computing the asymptotics of
P(BZ > t) ast — oo, where B ~ Beta(a,b) and Z ~ GGa(a + b + 1,2) are independent
random variables and a and b are positive integers; here Beta (a,b) denotes the beta

distribution with positive parameters a and b (with density ((11 ) 71— )" M L pepapy

where B (a,b) = % is the beta function), and GGa (¢, p) denotes the generalized
gamma distribution with density %xc‘le‘”pl{wo} for c,p > 0. We refer to [5] for
details on these connections; see also [12, 17].

The computation in [5] involves a few pages of alternating sums cancelling each other
out in just the right way. Here, in contrast, we provide a short and simple proof of these
asymptotics. The core calculation is only a few lines long, involving approximations at

three points which are natural and which can be justified in a relatively straightforward
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manner. Moreover, the argument works for all positive values of the parameters a,
b, ¢, and p. Throughout the paper we use standard asymptotic notation; for instance,
f@t)~g(t)ast— oo iflimo f(t) /g (¢) = 1.

Claim 1.1. Let a, b, ¢, and p be positive, let B ~ Beta (a,b), and let Z ~ GGa (¢, p), with
B and Z independent. Then we have

r (a’ + b) —byc—(b+1)p —tP
IP(BZ>t)~7F(C/p)F(a)p e pe ast — oo.

There has been lots of work on understanding the distribution and tail asymptotics of
products of random variables; see, e.g., [19] for a paper from nearly half a century ago,
and [10, 11] and references therein for recent developments. In particular, Claim 1.1 is
a special case of [10, Theorem 4.1], where the authors prove a general result for any
product BZ where B ~ Beta (a,b) and Z has a law which is in the maximum domain of
attraction of the Gumbel distribution. Due to the generality of their result their proof
is fairly involved. We thus believe that the simple proof we present here is useful in
highlighting why these asymptotics hold.

The product BZ studied in Claim 1.1 has many nice properties, for instance it has
moments of Gamma type [13] (and so its density can be written in terms of the Fox
H-function [8]). When p = 1, Z is a gamma random variable and BZ has a so-called G
distribution, with its moments described by Meijer’s G-function [7]. The case of p = 2
appears in many settings, including the preferential attachment model as mentioned
above, and see also [2, 18] for connections to critical random graphs, random walks, and
various random trees, including Aldous’s Brownian continuum random tree (CRT). In
a very interesting recent work, Pekoz, Rollin, and Ross [18] showed that generalized
gamma random variables with p being an integer greater than 2 arise as limits in time
inhomogeneous Pdlya-type urn schemes. It would be interesting to find connections to
urn schemes and random graph models for general values of p.

2 The core calculation

In this section we prove Claim 1.1 modulo some approximations whose validity is
justified later in Section 3. Put W = 27, z = w'/?, and dz = Jw'/P~'dw. The density of
W is thus

1
_ c/p—1_—w
w (W) = ——w e “lruso01-

In other words, W has a gamma distribution: W ~ Gamma (¢/p, 1). We have
P(BZ >t) =P (B*Z" > t*) = P (B"W > t),
and so the claim is equivalent to

r (CL + b) —bwc/p—b—le—w

Te/mT(@)” e

P (BPW > w) ~
We can write
P(BPW > w) =P (W >w)P(B*W > w|W > w).

The first factor has well-known asymptotics: P (W > w) ~ fy (w) as w — oo [1, for-
mula 6.5.32]. Also, it is well known that for any random variable W which has a
Gamma (r, 1) distribution, we have

(W—w|W>w)i>5 as w — oo,
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where £ is a standard exponential random variable. This convergence is rather strong,
e.g., convergence of densities. So

P(BPW >w|W >w)=P(BP (w+W —w) >w|W >w) (2.1)
1 1/p
~ P — -
P (B (w+E) > w) 1P<B><1+€/w> ) (2.2)
NIP(B>1—5)=IP(1—B<5) (2.3)
pw pw

~ /oo 1 wulle—Pwu gy, — 1 i ' T (b) (2.4)
o Bl(a,b) B (a,b) \pw ’

and the conclusion follows. The only thing that remains is to rigorously justify the
three points where asymptotic equivalence was used in the line of reasoning above; see
Section 3 for details.

3 Justifying the approximations

Here we justify why the expressions in (2.1), (2.2), (2.3), and (2.4) are all asymptoti-
cally equivalent as w — oo.
Asymptotic equivalence of (2.3) and (2.4). By definition we have

P o) p B pw P _ B
P(l-B< — | = P(l-B< —)e?dz= P(l1-B< — |e ?dz+e P,
pw 0 pw 0 pw

Since [, u’~te P""du = © (w™’) as w — oo, we can neglect all terms that are o (w™?)
as w — 0o, and so we only have to deal with the integral term on the right hand side
of the display above. Using that 1 — B ~ Beta (b,a) and also the change of variables
z = pwu, we have

/pw P (1 -B< Z) e ?dz = /Pw /pzw ! 21— 2)* N dae*dz
0 pw 0 o Blab)

1 u
I / / 21— 2)* " dre PV du
B(a,b) Jo Jo

The integral from 1/2 to 1 is negligible, since

1 u 1

1 / b—1 a—1 — — —pw/2

pw _— T 11—z dre P""du < pw) e PPy < e7PW/E,
1/2 B (a,b) Jo ( ) 1/2 ()

For the integral from 0 to 1/2 we first drop the factor (1 — z)* ' and we justify the
validity of this later. Integration by parts then tells us that

/2 b 1 1/2
/ ? (pw) ePWU g — _Te*pw/Q _|_/ ub—LemPwu gy,
0 2°p 0

o 1 o0
= / uble PUu gy — Te_pwﬂ - / ub~teTPwt gy,
0 2°b 1/2

Using that (1/2 +v)""" < 2+ (20)" ! for all b > 0 and v > 0, we have that the integral
from 1/2 to oo in the display above is negligible:

o o
/ ub—le—pwudu _ e—pw/Q / (1/2 + U)b_l e~ PWY )
1 0

/2
oo _ 2 270 (b
< e_pw/2/ (2 + (2v)b 1) e Py = | — + 71(7 ) e Pw/2,
0 pw (pw)
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We have thus shown that

1/2 pu 0o 1
P / / 2P Ydre PV dy, ~ / Blab) ub"teTPwi gy as w — oo.
0 0 a,

Finally, to justify dropping the (1 — z)*~" factor, note that ’1 -(1- x)a_l‘ < max {a,2}x
forall e > 0 and z € (0,1/2), and so

1/2
pw / / (1—2)* " dee P du —
pw VE b (b+1)
< 2 z’dre”P"du = O (w™ .
< max {a, }B(a,b)/o /0 x’dze u (w )

Asymptotic equivalence of (2.2) and (2.3). We need to show that, as w — oo,

R (== | U B

Using that 1 — z/p < (14 x)fl/p <l—-z/p+ %‘;:ﬂz for all z > 0, we have that the left
hand side of (3.1) is at most

£ E pt+1&? p p
P|B 1—-—1—— — . E< —— P& > — .
( E[ pw’ pw+ 2p2? wQ]’ _p+1w + >p+1w

We know that IP (5 > I%w) — e 71%, 50 we only have to deal with the first term in the

1/2
xb_lda:e_p“’"du

sum above. Using the change of variables z = pwu we have

1 2
p(peli- & & pH1e&) o p
pw pw 2p2 w? p+1

b—1 _ a—1 —z
/ / ,Li ,b)$ (1 —x)" " dze *dz
pw

(1—2)* " dee P""du

e

IS

p+1

1

maX{ ,(p/p+1) -
< (pw) / / Ldxe PWdy.
B (a,b) iy

Using simple estimates we have

[ e = g (  pte?)) < DO
u—RtL,2 2b

forall u € (O #> and so

t 1
S 1) (b+1 7T
(pw) / i / S Ldge gy < @FVOED / b —puu gy,
0 Ju-rfe 2b )

(p+1)(+1) /oo b4l — (p+H)O+HIB+2)
< pwu — +1)
< 5% (pw) ; u’Te du Soph w )

which concludes the proof of (3.1).
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Asymptotic equivalence of (2.1) and (2.2). We justify this via a direct calculation,
though there might be a more elegant way to do this. To abbreviate notation, let r := ¢/p.
By definition we have

Jo P(BP (w+y—w) > w) F(ly»)yrflefydy

P(BP(w+W —w)>w|W>w)= =
(B (w w) > w|W > w) Ry P

wr e o0 z\" 1
= —_—— P(BP (w+z)>w (1+—) e ?dz.
I, :cr—le—“?dz/o (B ) ) w
For r = 1 this is exactly equal to P (B? (w + &) > w). Since P (W > w) ~ fw (w) as
w — 0o, the fraction in front of the integral in the display above goes to 1 as w — 0o, so
what remains to show is that

r—1

/OOOIP(Bp(w+z)>w)‘<1+Z}) -1

e Fdz=0(P(B?(w+E&)>w)) asw— 0.

We partition the integral into two parts: from 0 to /w, and from /w to co. For the first
term note that for » > 1 and z € (0, /w) we have (1 + z/w)"~" —1 < e"/V¥ — 1, while for
r€(0,1) and z € (0, Vw) we have 1 — (1 + z/w)" "' <1— (1+1/yw) ' <1/\/w, and so

/OﬁIP(B”(w—kz) >w)’(1+2)r_1—1 e~*dz
<max{\/1@,e¢%—1}/0\/EIP(Bp(w+z)>w)e_zdz
< maxd —— eFF — 1L P (B (w+€) > w) = o (P (B (w+ ) > w)).
@

For the second term we can bound the factor P (B? (w + z) > w) in the integral by 1. For
r € (0,1) we have 1 — (1+ z/w)" ™" < 1— (1+z/w)”" < z/w and so we get the upper

bound of
1 [ 1 e 1
—/ ze Fdz = —eiﬁ/ (\/EJr u) e “du = ﬁ;e*ﬂ.
w ) w 0 w
For r > 1 we use the bound (1 + z/w) ™' — 1 < e"*/* to obtain the upper bound of
/DO Srfwvzg, — L jwenyvw < 9e~V/2,

VB 1—r/w

where we assumed that w > 2r.

4 An alternative calculation

After posting this note on the arXiv, Thomas Simon pointed out to us an alternative
calculation which we reproduce here. We use the same notation as in Section 2.

The density of BP is fp» (1) = p;((s)?b()b) z¥/P=1 (1 - xl/p)b_l 1(,c(0.1]; and so by multi-

plicative convolution the density of BPW is

— F(a+b) c/p—1 /1 (a—c)/p—1 1/p b=t —x/t
ferw (z) = PT (@) T (BT (C/p)x | t (1 t ) e dtl{z>0}.

Making the change of variable ¢ = 1/ (1 + y) we get

D(a+b)zi te®

foow (@) = pr (@1 ()T (%)

o c—a_1q _1\ b1 e
/ (I+y)? (1—(1+y) ) e dylps03-
0
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b—1
Let o (y) == (1+) 77 (1= (1+9)7'%) . since p(y) = (1+0(1))p' %y as
y — 0, it follows by direct integration that the integral in the display above is asymptoti-
cally equivalent to I (b) p' %z~" as # — co. Therefore

r b
forw (x) ~ ﬂp_bxc/p_b_le_m as r — oo,

['(a)T (c/p)
and the result follows, again by integration. We omit the details. It should be possible to
get the full asymptotic expansion of fpry after deriving that of ¢, although a general
formula for the coefficients in terms of the parameters might be hard to find.

We refer the reader to [14] for a similar calculation in the context of stable processes.
More generally, if the densities of random variables (and in particular their asymptotics)
are known, then the approach above should work to compute the tail asymptotics of
products of the random variables. However, if the densities are not known, then limit
theorems like the one used in Section 2 can be useful in deriving tail asymptotics. Indeed,
at the core of the proof of the much more general result presented in [10, Theorem 4.1]
lies their formula (4.4), which is the appropriate generalization of the fact that when W
has a gamma distribution, then (W —w|W > w) converges to a standard exponential
random variable as w — oo.
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