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It is well known that sequential decision making may lead to information
cascades. That is, when agents make decisions based on their private infor-
mation, as well as observing the actions of those before them, then it might
be rational to ignore their private signal and imitate the action of previous
individuals. If the individuals are choosing between a right and a wrong state,
and the initial actions are wrong, then the whole cascade will be wrong. This
issue is due to the fact that cascades can be based on very little information.

We show that if agents occasionally disregard the actions of others and
base their action only on their private information, then wrong cascades can
be avoided. Moreover, we study the optimal asymptotic rate at which the
error probability at time t can go to zero. The optimal policy is for the player
at time t to follow their private information with probability pt = c/t , leading
to a learning rate of c′/t , where the constants c and c′ are explicit.

1. Introduction. Many everyday situations involve sequential decision making, where
one makes a decision based on some private information and the previous actions of oth-
ers. Consider, for example, the following classroom experiment (see [12], Chapter 16). An
experimenter puts an urn containing three balls at the front of the room. This urn is either
majority blue, containing two blue balls and one yellow ball, or majority yellow, containing
two yellow balls and one blue ball; both urns are equally likely to be chosen. The students
then come to the front of the room one by one. Each student draws a ball at random from the
urn and puts it back without showing it to the rest of the class. The student then has to guess
the majority color of the urn, announcing her guess publicly. Each student thus makes their
decision based on their draw and the announcements of those gone before them.

Let us consider how such an experiment proceeds. The first student only has her own draw
to go by, so she will announce the drawn color as her best guess of the majority color. The
second student knows this, so together with her own draw she has two independent draws as
information. If the colors of the two agree, then the second student announces this color. If
the colors of the two draws differ, then she has to use a tie-breaking rule—let us assume that
she breaks ties by following her own draw. With this choice we see that the second student
also announces the color of the ball she drew. Hence the third student has three independent
draws as information and her best guess for the majority color of the urn will be the majority
color among the three draws.

Notice that if the first two announced colors were blue, then the third student announces
blue regardless of the color of her draw. The fourth student knows this and hence the an-
nouncement of the third student has no information value. The fourth student is thus in the
same situation as the third one and will also just announce blue following the first two stu-
dents. Following the same logic, all subsequent students will announce blue, regardless of
the color of their draw. This phenomenon is known as herding or as an information cascade.
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Its study was originated by Banerjee [5] and by Bikhchandani, Hirshleifer, and Welch [7],
independently and concurrently; we refer to Easley and Kleinberg [12], Chapter 16, for an
exposition.

The main issue with information cascades is that they can be wrong. For instance, it might
be that the urn is majority yellow, but the first two students draw a blue ball and announce
blue, and hence everyone announces blue as their guess. The main cause of this is that in-
formation cascades can be based on very little information: the actions of a few initial actors
can determine all subsequent actions. This also explains why information cascades are frag-
ile: if additional information is revealed (e.g., someone reveals not only their action but also
their private signal) or if some people deviate from rational behavior, then wrong information
cascades can be broken. The focus of this paper is to analyze the fragility of information
cascades quantitatively.

To this end, we study a variant of the simple model of sequential decision making stud-
ied previously, where not all agents are Bayesian: some are “revealers”, who disregard the
actions of others and act solely based on their private signal. This is motivated by both em-
pirical results from laboratory experiments on human behavior in such a setting [4], as well
as theoretical considerations [6]; see Section 1.3 for further discussion of related work. We
assume that the player at time t is a revealer with probability pt , independently of everything
else, and is a Bayesian otherwise. While agents do not know whether those before them were
Bayesians or revealers, this process still introduces additional information that can be useful
for making inferences. Are wrong information cascades broken in such a model? That is, do
people eventually learn the “correct” action?

We show that the answer is yes: there exist revealing probabilities {pt }∞t=1 such that learn-
ing occurs. Moreover, we study the optimal asymptotic rate at which the error probability at
time t can go to zero. We show that the optimal policy is for the player at time t to follow
their private information with probability pt = c/t , leading to a learning rate of c′/t , where
the constants c and c′ are explicit.

1.1. Model and main result. We describe the simplest case of the model first, in order to
focus on the conceptual points; we discuss generalizations at the end of the paper. The state
of the world is θ ∈ {1,2}, chosen uniformly at random, that is, P(θ = 1) = P(θ = 2) = 1/2.
At times t = 1,2,3, . . . players try to guess the state of the world, based on their private
information, as well as observing the actions (guesses) of those before them.

The private signals are drawn in the following way. There is an urn that contains two types
of balls: type 1 balls are blue and type 2 balls are yellow. Given θ , there are a balls of type θ

in the urn and b balls of the other type, where we assume that a > b > 0. Each player draws
a single ball (with replacement) from the urn, its color is their private signal. In other words,
the private signals X1,X2, . . . are i.i.d. with the following distribution:

P(X1 = 1 | θ = 1) = a

a + b
, P(X1 = 2 | θ = 1) = b

a + b
,

P(X1 = 1 | θ = 2) = b

a + b
, P(X1 = 2 | θ = 2) = a

a + b
.

The goal of the players is to guess the majority color (type) of the balls in the urn. We denote
the actions (guesses) of the players by Z1,Z2, . . . . We assume that each player is one of two
kinds:

• a Bayesian, whose guess is the maximum a posteriori (MAP) estimate;1 or

1We assume that if the posteriors are equal, then a Bayesian follows their private signal. See Appendix B for a
discussion on why the choice of tie-breaking rule is immaterial: our results hold regardless of how ties are broken.



2798 PERES, RÁCZ, SLY AND STUHL

• a revealer, whose guess is their private signal.

We assume that player t is a revealer with probability pt , independently of everything else.
Formally, let I1, I2, . . . be independent Bernoulli random variables (and also independent
of everything else) such that E[It ] = pt . If It = 0, then player t is a Bayesian and hence
Zt = MAP(Z1, . . . ,Zt−1,Xt), while if It = 1, then player t is a revealer and hence Zt = Xt .
Note that players do not know whether the players before them are Bayesians or revealers.
We do assume, however, that the players know the probabilities {pt }∞t=1.

The players aim to learn the majority color/type of the urn, that is, to learn θ , and also to
minimize the probability of an incorrect guess. Denote by

Et := P(Zt �= θ)

the probability that the guess of player t is incorrect. We aim to understand the optimal
asymptotic rate at which the error probability Et can go to zero; the following theorem is our
main result.

THEOREM 1.1. Consider the model described above and let

(1.1) κ� ≡ κ�(a, b) := 1

1 + a/b−1
loga/b

(log(
a/b−1
loga/b

) − 1)
.

We have that

(1.2) inf
{pt }∞t=1

lim sup
t→∞

tEt = κ�(a, b).

That is, the optimal rate of learning is 1/t , and we obtain the specific constant as well in
(1.1). As we shall see, one can get arbitrarily close to the optimum by taking

(1.3) pt = (1 + ε)
a + b

b
· κ�(a, b)

t
∧ 1

for t ≥ 1, where ε > 0 is arbitrary (and where we use the standard notation x ∧ y :=
min{x, y}).

1.2. Heuristic explanation of the optimal rate of learning. We now provide intuition for
why 1/t is the optimal order for the rate of learning, as well as the reasons behind the constant
in (1.1). First, note that the probability that player t is a revealer and draws a ball of the
minority color is b

a+b
pt . When this occurs, player t guesses incorrectly, implying that Et ≥

b
a+b

pt . So in order for the error probability Et to go to zero, pt must go to zero as t → ∞.
On the other hand, pt cannot go to zero too quickly. If

∑∞
t=1 pt < ∞, then by the Borel–

Cantelli lemma there will be only finitely many revealers almost surely. This leads to a situa-
tion similar to when there are no revealers: if a correct cascade has not started before the last
revealer, then there is a constant probability of ending up in a wrong cascade.

In fact, pt should decay as 1/t to achieve the optimal rate of learning. To see a lower bound
of this order, let pt = δ/t for δ small. By a Chernoff bound, with high probability there will
be at most 2δ log t revealers among the first t players. If the first two players and all revealers
until time t draw balls of the minority color, then so will every player until time t . This event
has probability at least c(b/(a + b))2δ log t for some constant c, which is greater than t−ε if
δ > 0 is small enough.

To see an upper bound, we now argue that if pt = C/t with C large enough, then the
probability that a wrong cascade (among Bayesians) lasts until time t is o(1/t). Indeed, in
such a cascade some of the revealers will be visible—precisely those that deviate from the
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cascade consensus. The player at time k has probability a
a+b

pk to be a revealer who draws the

majority color, and probability b
a+b

pk to be a revealer who draws the minority color. Hence
in a wrong cascade there will be, in expectation, a

a+b
C log t deviations from the cascade

consensus by time t , while in a right cascade the expected number of deviations is only
b

a+b
C log t . The total number of deviations by time t will roughly be Poisson distributed.

The probability that a Poi(λ) random variable is larger by a constant factor than its mean is
exponentially small in λ and here λ is on the order of log t . Hence by taking C large this
exponential in C log t will be o(1/t).

In fact, the heuristics of the previous paragraph give the right constant as well. To distin-
guish between right and wrong cascades we need to distinguish between Poi( a

a+b
C log t) and

Poi( b
a+b

C log t) random variables. The total variation distance between them satisfies

(1.4) 1 − TV
(

Poi
(

a

a + b
C log t

)
,Poi

(
b

a + b
C log t

))
= t−(1+o(1))f (a,b,C)

for some (explicit) function f (a, b,C). The right-hand side of (1.4) is roughly the error
probability if player t is a Bayesian. This term should be balanced with the term b

a+b
pt =

bC
a+b

· 1
t

coming from player t being a revealer and drawing a ball of the minority color.
This balancing requires choosing C = C(a, b) such that f (a, b,C) = 1, which occurs when
C = a+b

b
κ�(a, b), just as in (1.3).

1.3. Related work. The special case of the model described in the previous subsection
where every agent is Bayesian (i.e., with pt = 0 for every t ≥ 1) is identical to the model
described in the exposition of Easley and Kleinberg [12], Chapter 16. The original model of
Bikhchandani, Hirshleifer and Welch [7] differs only in its tie-breaking rule (breaking ties by
flipping a fair coin), while that of Banerjee [5] differs in the signal distribution (false signals
are drawn from a continuous distribution).2 Despite these minor differences, these models all
share the same phenomenological behavior as described in the introductory paragraphs.

In particular, Bikhchandani, Hirshleifer and Welch [7] emphasize the fragility of informa-
tion cascades with respect to different types of shocks, as prior work on conforming behavior
could not explain this phenomenon. They show examples from numerous fields (e.g., poli-
tics, zoology, medicine and finance) where cascades occur and are fragile. The current paper
can be viewed as a more detailed quantitative exploration of the fragility of cascades. What
amount of additional information is needed to break wrong cascades? What is the optimal
rate of learning that can be achieved?

One possible source of additional information comes from people not acting in a rational,
Bayesian manner. It is well documented that human behavior is often irrational (see, e.g.,
[18]). In the information cascades setting, laboratory experiments by Anderson and Holt [4]
show that while most participants act rationally, many do not. When deviations from rational
behavior occur, participants often act mainly or solely based on their private information,
disregarding the information in the actions of those before them.3 Such individuals effec-
tively reveal their private signal, which is valuable information for those coming after them.
The model described in Section 1.1, which contains Bayesians and revealers, captures this
empirically observed behavioral phenomenon.

A closely related model was introduced and studied by Bernardo and Welch [6]. This
model also contains two types of individuals: (1) rational ones and (2) overconfident ones,

2These models trace back to the works of Cover [10] and Hellman and Cover [17] on sequential learning with
finite memory. See [11, 26] for recent work in this direction.

3See also related experiments and results by Çelen and Kariv [8] for a setting with continuous signals.
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termed “entrepreneurs”, who put more weight on their private signal than a rational indi-
vidual would. As the authors mention in their paper, their motivation was not to show that
information cascades can be broken by overconfident behavior, but rather to offer a simple ex-
planation for the existence of overconfident individuals based on group selection principles.
Nevertheless, since here our focus is on breaking wrong information cascades, we compare
our work with theirs in this regard.

In [6] the overconfidence of entrepreneurs is termed “modest” if they still put positive
weight on the information from individuals before them, and it is termed “extreme” if they
act solely based on their private signal. If the overconfidence of entrepreneurs is modest, then
still a wrong cascade occurs with positive probability, bounded away from zero, which is
undesirable. Only if the overconfidence of entrepreneurs is extreme—as in the model in Sec-
tion 1.1—can learning occur eventually with probability one. Bernardo and Welch study their
model via simulations which, in the extreme overconfidence setting, suggest that a vanishing
fraction of entrepreneurs is optimal. Our work is a rigorous and much more detailed study
of this model;4 in particular, our results imply that the optimal number of entrepreneurs is
logarithmic in the size of the group.

The recent work of Cheng, Hann-Caruthers and Tamuz [9] also considers sequential learn-
ing models with non-Bayesian agents and shows that wrong cascades can be avoided if there
are some non-Bayesian agents. However, they assume (like in [6]) that each agent knows
which of the previous agents were revealers, an assumption that we do not make. More im-
portantly, the main contribution of the current paper is the explicit characterization of the
optimal rate of learning.

Another possible source of additional information is using the first few agents as “guinea
pigs”, that is, forcing them to follow their private signals; see the work of Sgroi [24]. Le,
Subramanian, and Berry [20] point out that this is related to the multi-armed bandit literature,
with guinea pigs corresponding to agents used for exploring [3, 19]. They also mention that
it follows from this literature that the optimal number of guinea pigs is logarithmic in the
number of agents [3]; this is consistent with our results, albeit in a slightly different setting.

Finally, Wang and Djurić [27] show that a particular form of randomized decision mak-
ing (instead of Bayesian updating) can also lead to asymptotic learning. Here the additional
randomness is chosen in a way to indeed provide additional information. This should be
contrasted with the work of Le, Subramanian and Berry [20], who show that randomness in
the form of independent noise (coming from observation errors) does not lead to asymptotic
learning.

The framework for sequential decision making described in this paper assumes finite dis-
crete private signals. If the informativeness of private signals is unbounded (e.g., Gaussian
signals), then wrong cascades do not form and asymptotic learning occurs [25]. In such set-
tings the main question concerns the speed of asymptotic learning; see, for instance, the work
of Hann-Caruthers, Martynov and Tamuz [15]. See also the concurrent work of Acemoglu,
Makhdoumi, Malekian and Ozdaglar [2], who study a model of sequential learning from rat-
ings and reviews; they characterize when asymptotic learning occurs and determine the speed
of learning when it does.

The framework of this paper also fits into the broader field of social learning. In particu-
lar, there is a large literature on learning in social networks. Acemoglu, Dahleh, Lobel and
Ozdaglar [1] consider a model of sequential decision making where agents act only once,
but each agent can only observe a subset of previous actions, based on a stochastic social

4We note that there are small differences in the model studied here and the model of Bernardo and Welch [6];
for instance, in [6] it is assumed that the identities of entrepreneurs are known whereas we do not make this
assumption.
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network. One of their results is that asymptotic learning occurs even if private signals have
bounded informativeness if there are sufficiently many individuals whose neighborhoods are
nonpersuasive and hence whose action will necessarily be influenced by their private sig-
nal. Similar to revealers in the model described in Section 1.1, these individuals provide a
sufficient amount of information for those coming after them to lead to asymptotic learn-
ing. Specifying their results to our setting, they imply that asymptotic learning occurs when
limt→∞ pt = 0 and

∑∞
t=1 pt = ∞. In comparison, the main contribution of the current paper

is the explicit characterization of the optimal rate of learning.
Another typical setting that is studied involves agents who take repeated actions based on

their private signal, as well as observing the actions of their neighbors in the network. The
main questions include whether or not all agents learn the correct action eventually, what is
the speed of learning if it occurs, and how do these depend on the network topology. We
highlight recent work of Harel, Mossel, Strack and Tamuz [16], which is similar in spirit to
the current paper in that it provides a detailed study of the asymptotic rates of social learning
in a mean field setting. A complete overview of the literature is beyond the scope of this
article; we refer the reader to the two papers above, as well as to the works of Gale and Kariv
[14], Mossel, Sly and Tamuz [21–23], and the references therein for more.

2. Proof of Theorem 1.1. The action of player t can be wrong in two ways: (i) if they
act as a Bayesian and the MAP estimator is incorrect, or (ii) if they act on only their private
signal and their draw from the urn is the minority type/color. Hence, conditioning on the coin
flip deciding whether player t is a Bayesian or a revealer, we obtain that

Et = P(Zt �= θ | It = 0)(1 − pt) + P(Zt �= θ | It = 1)pt .

Now recall that given It = 1, we have Zt = Xt , and so

P(Zt �= θ | It = 1) = P(Xt �= θ) = b

a + b
.

Recall also that given It = 0, we have Zt = MAP(Z1, . . . ,Zt−1,Xt). Thus

(2.1) Et = P
(
MAP(Z1, . . . ,Zt−1,Xt) �= θ

)
(1 − pt) + b

a + b
pt .

So we need to understand the probability that the MAP estimator is incorrect at time t . We
summarize the behavior of the MAP estimator in Lemma 2.1 and then prove Theorem 1.1
using this, before turning to the proof of the lemma. In the statement of the lemma and
throughout the paper we use standard asymptotic notation; for instance f (t) = o(g(t)) as
t → ∞ if limt→∞ f (t)/g(t) = 0 and f (t) = ω(g(t)) as t → ∞ if limt→∞ f (t)/g(t) = ∞.

LEMMA 2.1. Consider the setting of Theorem 1.1 and fix ε > 0.

(a) Suppose that

(2.2) pt = (1 + ε)
a + b

b
· κ�(a, b)

t
∧ 1

for every t ≥ 1. Then

(2.3) P
(
MAP(Z1, . . . ,Zt−1,Xt) �= θ

) = o

(
1

t

)
as t → ∞.

(b) Suppose that

(2.4) lim sup
t→∞

tpt ≤ (1 − ε)
a + b

b
κ�(a, b).



2802 PERES, RÁCZ, SLY AND STUHL

Then

(2.5) P
(
MAP(Z1, . . . ,Zt−1,Xt) �= θ

) = ω

(
1

t

)
as t → ∞.

PROOF OF THEOREM 1.1. Choose {pt }∞t=1 as in (2.2). Lemma 2.1 says that then (2.3)
holds, and hence by (2.1) we have that Et = (1 + o(1))(1 + ε)κ�(a, b)/t as t → ∞. Since
ε > 0 is arbitrary, we have that

(2.6) inf
{pt }∞t=1

lim sup
t→∞

tEt ≤ κ�(a, b).

To show that this is optimal, first note that Et ≥ b
a+b

pt . Hence, if

(2.7) lim sup
t→∞

tEt < κ�(a, b),

then the corresponding sequence of probabilities {pt }∞t=1 must satisfy (2.4) for some ε > 0.
But then Lemma 2.1 says that P(MAP(Z1, . . . ,Zt−1,Xt) �= θ) = ω(1/t). So by (2.1) we
have that Et = ω(1/t), which contradicts (2.7). Thus the inequality in (2.6) is, in fact, an
equality. �

The rest of this section consists of the proof of Lemma 2.1. We start in Section 2.1 by
introducing notation and making basic observations about the MAP estimator that are useful
for both bounds in Lemma 2.1. Then we turn to the proof of Lemma 2.1(a) in Section 2.2 and
we conclude with the proof of Lemma 2.1(b) in Section 2.3.

2.1. The MAP estimator. In this subsection we introduce some notation and make basic
observations about the MAP estimator that are useful for the bounds in Lemma 2.1, which is
proven subsequently.

For i ∈ {1,2}, let Pi denote the probability measure conditioned on θ = i, that is, Pi (·) :=
P(· | θ = i). Similarly, Ei denotes expectation conditioned on θ = i. For i ∈ {1,2} and t ≥ 1,
denote by P t

i the distribution of (Z1, . . . ,Zt ). That is, for (z1, . . . , zt ) ∈ {1,2}t , let

P t
i (z1, . . . , zt ) := Pi (Z1 = z1, . . . ,Zt = zt ).

Similarly, for i ∈ {1,2} and t ≥ 1, denote by Qt
i the distribution of (Z1, . . . ,Zt−1,Xt). Define

also the corresponding likelihoods:

Lt
i := P t

i (Z1, . . . ,Zt ),

Dt
i := Qt

i(Z1, . . . ,Zt−1,Xt),

with D0
i = L0

i = 1 for i ∈ {1,2}. An outside observer who records the actions of the first t

players can compute the likelihoods Lt
1 and Lt

2, while player t can compute the likelihoods
Dt

1 and Dt
2. If player t is a Bayesian, then their guess is based on the likelihoods Dt

1 and Dt
2.

Specifically, since the prior on θ is uniform, we have that

(2.8) MAP(Z1, . . . ,Zt−1,Xt) =

⎧⎪⎪⎨⎪⎪⎩
1, if Dt

1 > Dt
2,

2, if Dt
1 < Dt

2,

Xt , if Dt
1 = Dt

2,

where the last line is due to the tie-breaking rule; recall that if the posteriors are equal then a
Bayesian follows their private signal.

For i ∈ {1,2} and x ∈ {1,2}, define

ϕi(x) := a

a + b
1{x=i} + b

a + b
1{x �=i},
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and note that, since Xt is independent of everything else, we have that Dt
i = Lt−1

i ϕi(Xt )

for i ∈ {1,2} and t ≥ 1. Thus in order to understand the likelihoods Dt
1 and Dt

2, we need to
analyze Lt

1 and Lt
2. Define the L-likelihood and the D-likelihood ratios as

Rt := Lt
1

Lt
2

and R′
t := Dt

1

Dt
2
,

respectively. We can write

(2.9) R′
t = Rt−1

ϕ1(Xt)

ϕ2(Xt)

and hence we can determine the action of player t for given Rt−1 and Xt . Note that the
random variable ϕ1(Xt)/ϕ2(Xt) takes values in {b/a, a/b}, and hence we have the following
three cases.

• If Rt−1 < b/a, then R′
t < 1 and hence Dt

1 < Dt
2, regardless of the value of Xt . Hence

Zt = 1 if player t is a revealer and Xt = 1, and Zt = 2 otherwise.
• If Rt−1 ∈ [b/a, a/b], then Zt = Xt . This can be checked by considering both cases. If

Xt = 1 then ϕ1(Xt)/ϕ2(Xt) = a/b. Therefore by (2.9) we have that R′
t ≥ 1 and hence

Dt
1 ≥ Dt

2. If Dt
1 > Dt

2 then Zt = 1 = Xt by the definition of the MAP estimator, while if
Dt

1 = Dt
2 then Zt = Xt by the tie-breaking rule. The case of Xt = 2 is analogous.

• If Rt−1 > a/b, then R′
t > 1 and hence Dt

1 > Dt
2, regardless of the value of Xt . Hence

Zt = 2 if player t is a revealer and Xt = 2, and Zt = 1 otherwise.

The three cases above describe how the action of a player depends on their private signal and
on the actions of those who acted before them. This allows us to analyze how the L-likelihood
ratio Rt evolves.

The probability that the MAP estimator makes an error at time t can be expressed us-
ing the D-likelihood ratio as follows. To abbreviate the notation for vectors, we write
zt

1 ≡ (z1, . . . , zt ). First, conditioning on the value of θ we obtain that

(2.10) P
(
MAP

(
Zt−1

1 ,Xt

) �= θ
) = 1

2
P1

(
MAP

(
Zt−1

1 ,Xt

) = 2
) + 1

2
P2

(
MAP

(
Zt−1

1 ,Xt

) = 1
)
.

The two terms on the right-hand side of (2.10) are equal due to symmetry, so

(2.11) P
(
MAP

(
Zt−1

1 ,Xt

) �= θ
) = P1

(
MAP

(
Zt−1

1 ,Xt

) = 2
)
.

Using (2.8) we obtain the following upper and lower bounds:

P1
(
R′

t < 1
) ≤ P

(
MAP

(
Zt−1

1 ,Xt

) �= θ
) ≤ P1

(
R′

t ≤ 1
)
.

It is more convenient to work with the L-likelihood ratio, so using the fact that b
a
Rt−1 ≤ R′

t ≤
a
b
Rt−1 (which again follows from (2.9)) we obtain that

(2.12) P1

(
Rt−1 <

b

a

)
≤ P

(
MAP

(
Zt−1

1 ,Xt

) �= θ
) ≤ P1

(
Rt−1 ≤ a

b

)
.

To obtain parts (a) and (b) of Lemma 2.1 we bound from above and below the probabilities
appearing in (2.12).

2.2. An upper bound.

PROOF OF LEMMA 2.1(a). By (2.12) our goal is to show that

(2.13) P1

(
Rt ≤ a

b

)
= o

(
1

t

)
as t → ∞, and recall that we assume that the revealing probabilities {pt }∞t=1 are as in (2.2).
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Let {Ft }t≥0 denote the filtration defined by the random variables {Zt }t≥1. Observe that,
given θ = 1, the inverse of the L-likelihood ratio, {1/Rt }t≥0, is a martingale with respect to
{Ft }t≥0 (see (2.14) below with λ = 1; when λ = 1, the sum over i ∈ {1,2} is 1). In particu-
lar, this implies that E1[R−1

t ] = 1. Since x �→ xλ is a concave function for x ∈ (0,∞) when
λ ∈ [0,1], we have that, given θ = 1, the sequence {R−λ

t }t≥0 is a supermartingale with re-
spect to {Ft }t≥0. Thus E1[R−λ

t | Ft−1] ≤ R−λ
t−1. We now compute the conditional expectation

explicitly:

E1
[
R−λ

t | Ft−1
] = R−λ

t−1

∑
i∈{1,2}

P1(Zt = i | Ft−1)

(
P1(Zt = i | Ft−1)

P2(Zt = i | Ft−1)

)−λ

= R−λ
t−1

∑
i∈{1,2}

P1(Zt = i | Ft−1)
1−λ

P2(Zt = i | Ft−1)
λ.(2.14)

The values of the conditional probabilities in (2.14) depend on the value of Rt−1. As de-
scribed previously, we have three cases:

(2.15) P1(Zt = 1 | Ft−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a

a + b
pt if Rt−1 <

b

a
,

a

a + b
if Rt−1 ∈

[
b

a
,
a

b

]
,

1 − b

a + b
pt if Rt−1 >

a

b
,

and also

(2.16) P2(Zt = 1 | Ft−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b

a + b
pt if Rt−1 <

b

a
,

b

a + b
if Rt−1 ∈

[
b

a
,
a

b

]
,

1 − a

a + b
pt if Rt−1 >

a

b
.

Plugging these back into (2.14) we obtain the conditional expectation in the three cases:

E1

[(
Rt

Rt−1

)−λ ∣∣∣ Rt−1 <
b

a

]

= a1−λbλ

a + b
pt +

(
1 − a

a + b
pt

)1−λ(
1 − b

a + b
pt

)λ

,

(2.17)

E1

[(
Rt

Rt−1

)−λ ∣∣∣ Rt−1 ∈
[
b

a
,
a

b

]]

= a1−λbλ + aλb1−λ

a + b
,

(2.18)

E1

[(
Rt

Rt−1

)−λ ∣∣∣ Rt−1 >
a

b

]

= aλb1−λ

a + b
pt +

(
1 − b

a + b
pt

)1−λ(
1 − a

a + b
pt

)λ

.

(2.19)

The right-hand side of (2.18) is strictly less than 1, while the right-hand sides of (2.17) and
(2.19) converge to 1 as t → ∞. To estimate the quantities in (2.17) and (2.19), note that
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(1 − δ)λ = 1 − λδ + 
(δ2) as δ → 0. Defining

fλ ≡ fλ(a, b) := λa + (1 − λ)b − aλb1−λ

a + b
,

we have from (2.17)—(2.19) that

E1

[(
Rt

Rt−1

)−λ ∣∣∣ Rt−1 <
b

a

]
= 1 − f1−λ(a, b)pt + O

(
p2

t

)
,(2.20)

E1

[(
Rt

Rt−1

)−λ ∣∣∣ Rt−1 ∈
[
b

a
,
a

b

]]
= 1 − (

fλ(a, b) + f1−λ(a, b)
)
,(2.21)

E1

[(
Rt

Rt−1

)−λ ∣∣∣ Rt−1 >
a

b

]
= 1 − fλ(a, b)pt + O

(
p2

t

)
,(2.22)

as t → ∞. On the interval λ ∈ [0,1] the function λ �→ fλ is concave and nonnegative with
f0 = f1 = 0, it attains its maximum at

λ� ≡ λ�(a, b) := log(
a/b−1
loga/b

)

loga/b
,

and its maximum value is

(2.23) fλ�(a, b) = b

a + b
· 1

κ�(a, b)
,

where recall the definition of κ� from (1.1). Note also that λ� ∈ (1/2,1), due to the fact that
a > b.

We group the cases of (2.20) and (2.21) together, but treat them separately from the case
of (2.22), which leads to defining the following random sets:

At :=
{
i ∈ [t] : Ri−1 >

a

b

}
, Bt :=

{
i ∈ [t] : Ri−1 ≤ a

b

}
.

In words, the set At is the set of time indices when the MAP estimator is equal to 1 regardless
of the private signal at this time. Define also

R
(1)
t := ∏

i∈At

Ri

Ri−1
, R

(2)
t := ∏

i∈Bt

Ri

Ri−1
,

and note that Rt = R
(1)
t R

(2)
t , since {At,Bt } is a partition of [t]. By (2.22), we have that there

exists C = C(a, b) such that for any λ ∈ [0,1] we have that

(2.24) E1

[(
Rt

Rt−1

)−λ

efλpt

∣∣∣ Rt−1, t ∈ At

]
≤ eCp2

t .

Similarly, by (2.20), together with the fact that the right-hand side of (2.20) is greater than
the right-hand side of (2.21) for all t large enough, we have that there exists C′ = C′(a, b)

such that for any λ ∈ [0,1] we have that

(2.25) E1

[(
Rt

Rt−1

)−λ

ef1−λpt

∣∣∣ Rt−1, t ∈ Bt

]
≤ eC′p2

t .

Let Mt := ∑t
i=1 pi , and note that by the choice of {pt }∞t=1, together with (2.23), we have that

(2.26) Mt = (
1 + o(1)

)
(1 + ε)

a + b

b
κ�(a, b) log t = (

1 + o(1)
) (1 + ε)

fλ�(a, b)
log t
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as t → ∞. Define the random variable �t := ∑
i∈At

pi . Putting together (2.24) and (2.25), it
follows by induction that there exists C = C(a, b) such that for any λ1, λ2 ∈ [0,1] we have
that

(2.27) E1
[(

R
(1)
t

)−λ1efλ1�t
(
R

(2)
t

)−λ2ef1−λ2 (Mt−�t )
] ≤ exp

(
C

t∑
i=1

p2
i

)
.

Since
∑∞

i=1 p2
i < ∞, the expectation in (2.27) is bounded above by a constant independent

of t . That is, there exists C0 = C0(a, b) < ∞ such that

(2.28) E1
[(

R
(1)
t

)−λ1efλ1�t
(
R

(2)
t

)−λ2ef1−λ2 (Mt−�t )
] ≤ C0.

Next, we claim that Rt ≤ a
b

implies that

(2.29) R
(1)
t ≤ 1,

and furthermore that there exists a constant C1 < ∞ such that

(2.30) P1
(
R

(1)
t ≤ t−C1

) ≤ t−2.

We defer the proofs of both of these claims to Appendix A.
From (2.29) we get the following bound on the probability of interest:

(2.31) P1

(
Rt ≤ a

b

)
≤ P1

(
Rt ≤ a

b
, t−C1 ≤ R

(1)
t ≤ 1

)
+ P1

(
R

(1)
t ≤ t−C1

)
.

By (2.30) the second term is at most t−2, so in order to show (2.13) it suffices to bound
from above the first term in the display above. We can break the event {Rt ≤ a

b
, t−C1 ≤

R
(1)
t ≤ 1} into subevents based on the value of R

(1)
t . Recall that Rt = R

(1)
t R

(2)
t , so if R

(1)
t ∈

[e−(x+1), e−x] and Rt ≤ a
b

, then R
(2)
t ≤ a

b
ex+1. Letting C3 := 1 + log a

b
we obtain the bound

P1

(
Rt ≤ a

b
, t−C1 ≤ R

(1)
t ≤ 1

)
≤

C1 log t∑
x=0

P1
(
R

(1)
t ∈ [

e−(x+1), e−x]
,R

(2)
t ≤ ex+C3

)

≤
C1 log t∑
x=0

P1
(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
.(2.32)

We estimate each term in this sum. First, we can rewrite this probability as follows:

P1
(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
= P1

((
R

(1)
t

)−λ� ≥ eλ�x,
(
R

(2)
t

)−(1−λ�) ≥ e−(1−λ�)(x+C3)
)

= P1
((

R
(1)
t

)−λ�efλ��t ≥ eλ�x+fλ��t ,(
R

(2)
t

)−(1−λ�)efλ� (Mt−�t ) ≥ e−(1−λ�)(x+C3)+fλ�(Mt−�t )
)
.

If both inequalities hold in the display above, then also the product of the expressions on the
left-hand side are greater than or equal to the product of the expressions on the right-hand
side. We thus obtain the following bound:

P1
(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

)
≤ P1

((
R

(1)
t

)−λ�efλ��t
(
R

(2)
t

)−(1−λ�)efλ� (Mt−�t ) ≥ e(2λ�−1)x+fλ�Mt−(1−λ�)C3
)
.
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Using Markov’s inequality, together with (2.28) with λ1 = λ� and λ2 = 1−λ�, we obtain that

P1
(
R

(1)
t ≤ e−x,R

(2)
t ≤ ex+C3

) ≤ C0e
(1−λ�)C3 exp

{−(2λ� − 1)x − fλ�Mt

}
≤ C0e

(1−λ�)C3 exp{−fλ�Mt },
(2.33)

where the second inequality follows from the facts that x ≥ 0 and λ� > 1/2. Recalling from
(2.26) that fλ�Mt = (1 + o(1))(1 + ε) log t , and using (2.32) and (2.33), we arrive at the
following bound:

P1

(
Rt ≤ a

b
, t−C1 ≤ R

(1)
t ≤ 1

)
≤ C4 log t

t (1+o(1))(1+ε)

for some constant C4 < ∞. Putting this together with (2.31) and (2.30) we obtain (2.13). �

2.3. A lower bound.

PROOF OF LEMMA 2.1(b). By (2.12) our goal is to show that

(2.34) P1

(
Rt <

b

a

)
= ω

(
1

t

)
as t → ∞, and recall that we assume that the revealing probabilities {pt }∞t=1 satisfy (2.4). As
in the proof of the upper bound, let Mt := ∑t

i=1 pi and note that (2.4) implies that

(2.35) Mt ≤ (
1 + o(1)

)
(1 − ε)

a + b

b
κ�(a, b) log t = (

1 + o(1)
) 1 − ε

fλ�(a, b)
log t

as t → ∞, where recall the definition of fλ and λ� from Section 2.2. We may also assume
that

(2.36) Mt ≥ δ log t

for all t large enough, where δ ≡ δ(a, b) := 1
2 log(1+a/b)

; if Mt < δ log t then a simple argu-
ment shows that (2.5) holds, which we defer to Appendix A.3. Define also τ(s) := min{t ≥ 1 :
Mt ≥ s}, and note that (2.35) and (2.36) imply that exp((1 + o(1))

fλ�
1−ε

s) ≤ τ(s) ≤ exp(s/δ)

as s → ∞. In particular τ(s) < ∞ for every s < ∞.
In order to show (2.34), we define three events that together imply that Rt < b/a and

show that the probability that they all occur, given θ = 1, is ω(1/t) as t → ∞. First, let
t0 := τ(2a+b

a−b
log(a/b) + 2) and define

(2.37) E0 :=
{
Rt0 ≤

(
b

a

)4}
.

This initial event takes the L-likelihood ratio below b/a, and the events we now define ensure
that it stays below b/a. Let Jt := logRt denote the L-log-likelihood ratio and define the
stopping time T := min{s ≥ t0 : Js /∈ [− log t,2 log b

a
]}. Define now the events

E1 := {JT ≤ − log t},
E2 :=

{
min
s∈[t]Js ≥ − log3/4 t

}
.

Observe that E0, E1 and E2 together imply that Js ∈ [− log3/4 t,2 log b
a
] for all s ∈ [t0, t]. In

particular, they imply that Rt < b/a and so

(2.38) P1

(
Rt <

b

a

)
≥ P1(E0 ∩ E1 ∩ E2).

In what follows we show that the right-hand side of the display above is ω(1/t) as t → ∞.
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We start with the initial event E0. Note that the first two individuals follow their private
signal, that is, Z1 = X1 and Z2 = X2, and hence if X1 = X2 = 2, then R2 = (b/a)2. If Xi = 2
for all i ∈ {3,4, . . . , t0} then also Zi = 2 for all i ∈ {3,4, . . . , t0}, regardless of whether the
corresponding players are Bayesians or revealers. Consequently, by (2.15) and (2.16), in this
event the L-likelihood ratio at time t0 is equal to

(2.39) Rt0 =
(

b

a

)2 t0∏
i=3

1 − a
a+b

pi

1 − b
a+b

pi

.

Now using

1 − a
a+b

pi

1 − b
a+b

pi

= 1 −
a−b
a+b

pi

1 − b
a+b

pi

≤ 1 − a − b

a + b
pi ≤ e− a−b

a+b
pi ,

and also, by the definition of t0, the fact that

t0∑
i=3

pi ≥ Mt0 − 2 ≥ 2
a + b

a − b
log

a

b
,

we obtain from (2.39) that Rt0 ≤ (b/a)4. Hence

P1(E0) ≥ P1
(
Xi = 2 ∀i ∈ [t0]) =

(
b

a + b

)t0

.

Since t0 is a constant, we have that P1(E0) is strictly bounded away from zero. Thus by (2.38)
it suffices to show that

(2.40) P1(E1 ∩ E2 | E0) = ω

(
1

t

)
as t → ∞.

We now turn to estimating the probability of E1 and E2, given E0. Note that, given E0,
the L-log-likelihood ratio performs a random walk from time t0 until the stopping time T .
Specifically, for s ≥ t0 we can write

Js∧T = Jt0 +
s∧T∑

i=t0+1

ξi,

where the random variables {ξi}i>t0 are independent (of each other and everything else) with
the following distribution under P1:

P1

(
ξi = log

a

b

)
= a

a + b
pi,

P1

(
ξi = log

1 − a
a+b

pi

1 − b
a+b

pi

)
= 1 − a

a + b
pi.

Note, in particular, that the random variables {ξi}i>t0 are uniformly bounded: log b
a

≤ ξi ≤
log a

b
for all i > t0. Furthermore, we have that

E1[ξi] = 1 + a
b
(log a

b
− 1)

1 + a
b

pi + 

(
p2

i

)
,

showing that the L-log-likelihood ratio has an upward drift in this regime. We perform a
change of measure to remove this drift: define P̃1 such that under P̃1 the random variables
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{ξi}i>t0 have expectation zero. That is, define P̃1 such that for all i > t0 we have that

P̃1

(
ξi = log

a

b

)
= qi,

P̃1

(
ξi = log

1 − a
a+b

pi

1 − b
a+b

pi

)
= 1 − qi,

where qi is chosen such that Ẽ1[ξi] = 0. A short computation gives that

qi =
log

1− b
a+b

pi

1− a
a+b

pi

log(a
b

· 1− b
a+b

pi

1− a
a+b

pi
)

.

In the following we first estimate P̃1(E1 ∩ E2 | E0) and then show (2.40) by understanding the
Radon–Nikodym derivative of P1(· | E0) with respect to P̃1(· | E0).

Under P̃1 we have that {Js∧T }s≥t0 is a martingale. By the optional stopping theorem we
thus have that

(2.41) Ẽ1[JT | E0] = Ẽ1[Jt0].
By the definition of T we have that either JT > 2 log b

a
, in which case JT ∈ (2 log b

a
, log b

a
],

or JT < − log t , in which case JT ∈ [− log t − log a
b
,− log t). Hence we have that

Ẽ1[JT | E0] = Ẽ1[JT 1{JT <− log t} | E0] + Ẽ1[JT 1{JT >2 log(b/a)} | E0]

≥ P̃1(E1 | E0) ×
(
− log t − log

a

b

)
+ (

1 − P̃1(E1 | E0)
) × 2 log

b

a

≥ 2 log
b

a
+ P̃1(E1 | E0) × (− log t).

(2.42)

From the definition of t0 we also have that

(2.43) Ẽ1[Jt0] ≤ 4 log
b

a
.

Thus putting together (2.41), (2.42), and (2.43) we obtain that

(2.44) P̃1(E1 | E0) ≥ 2 log a
b

log t
.

Applying Theorem 1.6 in [13] we have that

P̃1

(
min
s∈[t]Js < − log3/4 t

∣∣ E0

)
≤ exp

(−c log1/2 t
)

for some constant c > 0. Together with (2.44) this shows that

(2.45) P̃1(E1 ∩ E2 | E0) ≥ log a
b

log t

for all t large enough.
Since we want to show (2.40), what remains is to estimate the Radon–Nikodym derivative

of P1(· | E0) with respect to P̃1(· | E0) on the sigma-algebra Ft and on the event E1 ∩E2. From
the definition of P̃1 we can write this down explicitly: we have that

(2.46)

dP1(· | E0)

dP̃1(· | E0)

∣∣∣∣
Ft

1{E1∩E2}

=
t∏

i=t0+1

{ a
a+b

pi

qi

1{ξi=log a
b
} + 1 − a

a+b
pi

1 − qi

1
{ξi=log

1− a
a+b

pi

1− b
a+b

pi

}

}
1{E1∩E2}.
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We estimate each factor in this product. Specifically, we claim that there exists a constant
C = C(a, b) such that for every i ∈ {t0 + 1, . . . , t} the following holds:

(2.47)
a

a+b
pi

qi

1{ξi=log a
b
} + 1 − a

a+b
pi

1 − qi

1
{ξi=log

1− a
a+b

pi

1− b
a+b

pi

}
≥ exp

(
(1 − λ�)ξi − fλ�pi − Cp2

i

)
.

This inequality can be checked for both potential values of ξi by expanding the expressions

in pi . When ξi = log
1− a

a+b
pi

1− b
a+b

pi
, both sides of (2.47) are equal to 1 + a−b−a log a

b

(a+b) log a
b

pi +
(p2
i ), so

by choosing C large enough, the quadratic term on the right-hand side will be smaller than
that on the left-hand side, and hence (2.47) holds in this case if C is large enough. When

ξi = log a
b

, the left-hand side of (2.47) is equal to
a log a

b

a−b
+ a log a

b

a−b
( a−b
(a+b) log a

b
− 1

2)pi + 
(p2
i ),

while the right-hand side of (2.47) is equal to
a log a

b

a−b
− a log a

b

a−b
fλ�pi +
(p2

i ). Thus the constant
terms are equal and it can be checked that the coefficient of the first order term is greater for
the expression on the left-hand side than for the expression on the right-hand side. Hence in
this case (2.47) holds for all i large enough regardless of the value of C, and if C is chosen
large enough then it holds for all i ∈ {t0 + 1, . . . , t}.

After justifying (2.47), we can now turn back to estimating the quantity in (2.46) by mul-
tiplying (2.47) over all i ∈ {t0 + 1, . . . , t}. Using the fact that Jt = Jt0 + ∑t

i=t0+1 ξi on the
event E1 ∩ E2, and recalling also that Mt = ∑t

i=1 pi , we obtain that

(2.48)

dP1(· | E0)

dP̃1(· | E0)

∣∣∣∣
Ft

1{E1∩E2}

≥ exp

(
(1 − λ�)(Jt − Jt0) − fλ�(Mt − Mt0) − C

t∑
i=t0+1

p2
i

)
1{E1∩E2}

≥ exp
(
(1 − λ�)Jt − fλ�Mt − C′)1{E1∩E2},

where C′ := C
∑∞

i=1 p2
i , and where in the second inequality we used that Jt0 < 0 (given

E0) and that
∑∞

i=1 p2
i < ∞ due to the assumption (2.4). Now recall from (2.35) that fλ�Mt ≤

(1+o(1))(1−ε) log t as t → ∞. Recall also that on the event E2 we have that Jt ≥ − log3/4 t .
Plugging these two estimates into the right-hand side of (2.48) we obtain that

dP1(· | E0)

dP̃1(· | E0)

∣∣∣∣
Ft

1{E1∩E2} ≥ exp
(−(1 − λ�) log3/4 t − C′) × t−(1+o(1))(1−ε)1{E1∩E2}.

Consequently we obtain that

P1(E1 ∩ E2 | E0) = Ẽ1

[
dP1(· | E0)

dP̃1(· | E0)

∣∣∣∣
Ft

1{E1∩E2}
∣∣∣ E0

]
≥ exp

(−(1 − λ�) log3/4 t − C′) × t−(1+o(1))(1−ε) × P̃1(E1 ∩ E2 | E0)

≥ log a
b

log t
× exp

(−(1 − λ�) log3/4 t − C′) × t−(1+o(1))(1−ε) = ω

(
1

t

)
,

where in the second inequality we used (2.45). This concludes the proof of (2.40) as desired.
�

3. Conclusions and future work. In this paper we have shown that wrong information
cascades can be broken by a small number of individuals who disregard the actions of oth-
ers and only follow their private signal, leading to asymptotic learning of the correct action.
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Moreover, we determined precisely the optimal asymptotic rate of decay of the error proba-
bility at a given time t .

This paper initiates a larger investigation into a broad family of problems that probe the
fragility of information cascades. We collect here some natural directions for future work.

• Alternative objectives. While asymptotic learning is the primary objective, once this is
achieved one can ask to minimize various notions of error. In this paper we focused on the
optimal asymptotic rate at which the error probability Et can go to zero, but other notions
of error are natural to consider as well. For instance, what is the expected number of errors
until time t and how can this be minimized? That is, what is

NEt ≡ NEt (a, b) := inf
{pi}ti=1

E

[
t∑

i=1

1{Zi �=θ}
]

and what are the optimal revealing probabilities to achieve this? Theorem 1.1 implies that
NEt ≤ (1 + o(1))κ� log t . We conjecture that NEt = (1 + o(1))c log t for some constant c

such that 0 < c < κ�.
• Alternative behavioral models. In this paper we considered a particular model: each player

is either a Bayesian or follows their private signal blindly. More generally, one can consider
any (causal) behavioral model that deviates from a pure Bayesian model. How do various
notions of error depend on the model specifics?

• More general setups. In this paper we considered the simplest possible setup: two possible
states of the world, a uniform prior over them, with each state corresponding to a distri-
bution over two possible private signals, which are in a natural bijection with the possible
states of the world. More generally one can ask the same questions with k possible states
of the world, a general prior over them, and each possible state of the world corresponding
to a distribution over � possible private signals.

• Unknown parameters. We assumed that the players know the revealing probabilities
{pt }∞t=1. What if these are unknown, or if the players believe that they are {pt }∞t=1 when
they are actually {qt }∞t=1? Does asymptotic learning occur? If so, what is the optimal learn-
ing rate?

We suspect that, for many of these problems, the results and techniques of this paper will
be useful in determining the correct order of magnitude for the relevant quantities. However,
just like in this paper, determining the precise constants will require a deeper understanding
of the specific problem of interest.

APPENDIX A: AUXILIARY PROOFS

A.1. Proof of (2.29). To prove (2.29), first note that the set At is either empty, in which
case R

(1)
t = 1, or it can be decomposed into blocks of consecutive integers. That is, there exist

integers �1, u1, �2, u2, . . . , �k, uk (the lower and upper ends of the blocks) such that �i ≤ ui

for every i ∈ [k], ui + 1 < �i+1 for every i ∈ [k − 1], and At = ⋃k
i=1{�i, �i + 1, . . . , ui}. We

can then write

(A.1) R
(1)
t =

k∏
i=1

ui∏
j=�i

Rj

Rj−1
=

k∏
i=1

Rui

R�i−1
.

Since �i ∈ At we have that R�i−1 > a
b

for every i ∈ [k], and since ui + 1 /∈ At we have that
Rui

≤ a
b

for every i ∈ [k]; the condition Rt ≤ a
b

is necessary to ensure that this latter fact
holds for i = k as well, that is, that Ruk

≤ a
b

. Putting these together we obtain that each factor
in (A.1) is at most 1, showing that (2.29) holds.
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A.2. Proof of (2.30). We first rewrite the probability in question by taking logarithms:

P1
(
R

(1)
t ≤ t−C1

) = P1

( ∑
i∈At

log
Ri

Ri−1
≤ −C1 log t

)
.

Given θ = 1 and i ∈ At , the random variable log Ri

Ri−1
has the following distribution: it takes

the value log b
a

with probability b
a+b

pi and it takes the value log
1− b

a+b
pi

1− a
a+b

pi
with probability

1 − b
a+b

pi . Define Yi := (log Ri

Ri−1
)∧ 0. Thus, given θ = 1 and i ∈ At , the random variable Yi

takes the value log b
a

with probability b
a+b

pi and it takes the value 0 otherwise. We then have
that

P1

( ∑
i∈At

log
Ri

Ri−1
≤ −C1 log t

)
≤ P1

( ∑
i∈At

Yi ≤ −C1 log t

)

= P1

( ∑
i∈At

−Yi

log a
b

≥ C1

log a
b

log t

)
,

and notice that Y ′
i := −Yi/ log a

b
is a Bernoulli random variable with expectation EY ′

i =
b

a+b
pi . Let {Bi}∞i=1 be independent Bernoulli random variables with expectation EBi =

b
a+b

pi . We then have the following bound:

P1

( ∑
i∈At

−Yi

log a
b

≥ C1

log a
b

log t

)
≤ P

(
t∑

i=1

Bi ≥ C1

log a
b

log t

)
.

Note that E
∑t

i=1 Bi = a
a+b

∑t
i=1 pi = (1 + o(1))C ′ log t for some C′ = C′(a, b). Hence by

the multiplicative Chernoff bound we obtain that

P

(
t∑

i=1

Bi ≥ C1

log a
b

log t

)
≤ exp(−2 log t) = t−2

if C1 is large enough, concluding the proof.

A.3. Small revealing probabilities. Here we prove Lemma 2.1(b) in the case when
Mt := ∑t

i=1 pi < δ log t , where δ ≡ δ(a, b) := 1
2 log(1+a/b)

. Note that the first two individ-
uals follow their private signal, that is, Z1 = X1 and Z2 = X2. Hence if X1 = X2 = 2, then
R2 = (b/a)2, and we are in the regime where the MAP estimator outputs 2. Thus if all the
subsequent revealers have 2 as their private signal then the MAP estimator continues to out-
put 2. Let Revt := {i ∈ [t] : Ii = 1} denote the set of revealers until time t . Recalling (2.11)
we thus obtain the following lower bound:

(A.2) P
(
MAP(Z1, . . . ,Zt−1,Xt) �= θ

) ≥ P1(X1 = X2 = 2,Xi = 2 ∀i ∈ Revt ).

Note that |Revt | is independent of θ and that the Chernoff bound gives that

P
(|Revt | > 1.8δ log t

) ≤ 1/2.

Thus we have that

(A.3)

P1(X1 = X2 = 2,Xi = 2 ∀i ∈ Revt )

≥ 1

2
P1

(
X1 = X2 = 2,Xi = 2 ∀i ∈ Revt | |Revt | ≤ 1.8δ log t

)
≥ 1

2

(
b

a + b

)2+1.8δ log t

= b2

2(a + b)2 × t−0.9.

Putting together (A.2) and (A.3) proves (2.5).
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APPENDIX B: ON TIE-BREAKING RULES

A natural question is whether our results depend on the choice of the tie-breaking rule. Our
main reason for choosing the tie-breaking rule that we chose is its simplicity (just like Le et
al. [20] mention in their paper). It turns out that the choice of tie-breaking rule is immaterial:
our result holds regardless of the tie-breaking rule—that is, the learning rate, together with
the explicit constants, are unchanged—and essentially the same proof works to show this. We
now briefly explain why this is the case.

First, note that the upper and lower bounds in (2.12), which bound the probability that
the MAP estimator is incorrect, hold for any tie-breaking rule. These bounds are the starting
point of the proof. They show that the analysis boils down to understanding the behavior of
the L-likelihood ratio.

Turning now to the proof of the upper bound in Section 2.2, the following things are
changed and unchanged for different tie-breaking rules. In (2.15) and (2.16), the middle cases
depend on the tie-breaking rule, but the other cases are unchanged. If the values in these two
middle cases are both strictly bounded away from 0 and 1, then the proof goes through in
the same way, as we now explain. This means that (2.17) and (2.19) are unchanged, while
(2.18) will change depending on the tie-breaking rule, but regardless will be a constant that is
strictly less than 1. The same goes for the next three numbered displays: (2.20) and (2.22) are
unchanged, while (2.21) will change depending on the tie-breaking rule, but regardless will
be a constant that is strictly less than 1. Since what matters in the rest of the proof is (2.20)
and (2.22) (with (2.21) bounded by (2.20)), everything else goes through unchanged.

So the only issue is if the two middle cases in (2.15) and (2.16) are not bounded away
from 0 and 1. This means that (2.18) and (2.21) could potentially be 1. In this case we have
to additionally argue that the L-likelihood ratio quickly gets out of the interval [b/a, a/b]
and hence (2.20) and (2.22) govern the behavior in this case as well.

In the proof of the lower bound in Section 2.3, the only thing that changes is the lower
bound estimate for the probability P1(E0). With a different tie-breaking rule we would not
have that Z2 = X2. Nonetheless, for any tie-breaking rule we can show (possibly with chang-
ing t0 to a different constant) that P1(E0) is bounded from below by a constant. The rest of
the proof goes through unchanged.
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