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MULTIDIMENSIONAL STICKY BROWNIAN MOTIONS AS LIMITS
OF EXCLUSION PROCESSES

BY MIKLÓS Z. RÁCZ1 AND MYKHAYLO SHKOLNIKOV

University of California, Berkeley

We study exclusion processes on the integer lattice in which particles
change their velocities due to stickiness. Specifically, whenever two or more
particles occupy adjacent sites, they stick together for an extended period of
time, and the entire particle system is slowed down until the “collision” is re-
solved. We show that under diffusive scaling of space and time such processes
converge to what one might refer to as a sticky reflected Brownian motion in
the wedge. The latter behaves as a Brownian motion with constant drift vector
and diffusion matrix in the interior of the wedge, and reflects at the boundary
of the wedge after spending an instant of time there. In particular, this leads to
a natural multidimensional generalization of sticky Brownian motion on the
half-line, which is of interest in both queuing theory and stochastic portfolio
theory. For instance, this can model a market, which experiences a slowdown
due to a major event (such as a court trial between some of the largest firms
in the market) deciding about the new market leader.

1. Introduction. Stochastic processes with sticky points in the Markov pro-
cess sense have been studied for more than half a century. Sticky Brownian mo-
tion on the half-line is the process evolving as a standard Brownian motion away
from zero and reflecting at zero after spending an instant of time there—as op-
posed to a reflecting Brownian motion, which reflects instantaneously. This pro-
cess was initially studied by Feller [10, 11], and Itô and McKean [17, 18] in a
more general context, and was subsequently analyzed in more detail by several
further authors [1, 12]. These papers show that sticky Brownian motion arises as a
time change of a reflecting Brownian motion, and that it describes the scaling limit
of random walks on the natural numbers whose jump rate at zero is significantly
smaller than the jump rates at positive sites.

In stochastic analysis, the stochastic differential equation (SDE)

dS(t) = 1{S(t)>0} dB(t) + η1{S(t)=0} dt(1)

satisfied by sticky Brownian motion has drawn much attention, as it is an example
of an SDE for which weak existence and uniqueness hold, but strong existence
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and pathwise uniqueness fail; see [6]. In fact, in [29] (see also the survey [8]) it is
shown that a weak solution to (1) cannot be adapted to a cozy filtration, that is, a
filtration generated by a finite or infinite-dimensional Brownian motion.

The present study is motivated by the question of how one can define and ana-
lyze multidimensional analogues of (1) and whether solutions to the corresponding
systems of SDEs arise as suitable scaling limits of interacting particle systems in
analogy to the findings of [12] in the one-dimensional case. In [20], Section 3, it
is shown that a large class of reflecting Brownian motions in the n-dimensional
wedge

W = {
x = (x1, . . . , xn) ∈ R

n :x1 ≤ x2 ≤ · · · ≤ xn

}
arise as limits of certain exclusion processes with speed change under diffusive
rescaling. As we show below, sticky Brownian motions with state space W can also
be obtained as scaling limits of suitable exclusion processes with speed change.

1.1. Exclusion processes with sticky particles. To simplify the exposition, we
next describe a simple class of particle systems which converge to sticky Brown-
ian motions in W in the scaling limit, and postpone the description of the much
wider class of particle systems that we can handle to Section 3. We fix the num-
ber of particles n ∈ N, and also rate parameters a > 0, �L = (θL

i,j )i∈[n],j∈[n−1] ∈
[0,∞)n×(n−1), and �R = (θR

i,j )i∈[n],j∈[n−1] ∈ [0,∞)n×(n−1) with the notation

[n] = {1,2, . . . , n}.
For a fixed value of the scaling parameter M > 0, the particles move on the
rescaled lattice Z/

√
M ; to describe their motion we introduce the following Pois-

son processes, all of which are independent, and all of which have jump size
1√
M

. For i ∈ [n], the Poisson processes Pi and Qi have jump rates Ma, while for

i ∈ [n], j ∈ [n − 1], the Poisson processes Li,j and Ri,j have jump rates
√

MθL
i,j

and
√

MθR
i,j , respectively. In addition, for notational convenience we introduce

ghost particles at ±∞, namely: XM
0 (·) ≡ −∞ and XM

n+1(·) ≡ ∞. For any initial

condition XM
1 (0) < XM

2 (0) < · · · < XM
n (0) on Z/

√
M , we can then define a parti-

cle system evolving on Z/
√

M in continuous time by setting

dXM
i (t) = 1{XM

k (t)+(1/
√

M)<XM
k+1(t),k∈[n−1]} d

(
Pi(t) − Qi(t)

)
+

n−1∑
j=1

1{XM
i (t)+(1/

√
M)<XM

i+1(t),X
M
j (t)+(1/

√
M)=XM

j+1(t)} dRi,j (t)(2)

−
n−1∑
j=1

1{XM
i−1(t)+(1/

√
M)<XM

i (t),XM
j (t)+(1/

√
M)=XM

j+1(t)} dLi,j (t),
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for i ∈ [n]. Note that (2) guarantees that for any t ≥ 0, the particle configuration
(XM

1 (t),XM
2 (t), . . . ,XM

n (t)) is an element of the discrete wedge

WM =
{
x ∈ (Z/

√
M)n :xk + 1√

M
≤ xk+1, k ∈ [n − 1]

}
.

Intuitively, when apart, the particles move independently on the rescaled lattice
Z/

√
M according to the processes Pi − Qi , i = 1,2, . . . , n (in particular, with

jump rates of order M); however, when two particles land on adjacent sites—
an event we describe as a “collision”—the system experiences a slowdown: the
particles change their jump rates to the ones of the processes Li,j and Ri,j , i ∈
[n], j ∈ [n−1], which are of order

√
M . The interaction between adjacent particles

can be described as stickiness, as it takes a long time (on the time scale Mt) until
the collision is resolved and the particles return to jump rates of order M .

1.2. Convergence to multidimensional sticky Brownian motions. The de-
scribed particle systems converge to a sticky Brownian motion in W under the
following assumption. Define V = (vi,j )i∈[n],j∈[n−1], the speed change matrix, by
setting

vi,j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θR
i,j − θL

i,j , if j �= i − 1, i,

θR
i,i−1, if j = i − 1,

−θL
i,i, if j = i,

(3)

and the reflection matrix Q = (qj,j ′)j,j ′∈[n−1] by setting qj,j ′ = vj+1,j ′ − vj,j ′ .
When there is a collision between particles j ′ and j ′ + 1 and no other collisions,
then the velocity of particle i is given by vi,j ′ , and the velocity of gap j between
particles j and j + 1 is given by qj,j ′ . Define also the (n − 1) × (n − 1)2 matrix

Q(2) = (q
(2)
i,(k,�))

n−1
i,k,l=1 according to

q
(2)
i,(k,�) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−θL
i,�, if k = i − 1, � �= i − 1,

θL
i+1,� + θR

i,�, if k = i, � �= i,

−θR
i+1,�, if k = i + 1, � �= i + 1,

0, otherwise.

Let q·,j denote the j th column of Q, let q
(2)
·,(k,�) denote the column of Q(2) indexed

by (k, �) and let I(2) ⊆ [n − 1]2 denote the set of pairs of indices (k, �) such that

q
(2)
·,(k,�) is the zero vector. Note that (k, k) ∈ I(2) for all k ∈ [n − 1].

ASSUMPTION 1. (a) Assume that the matrix Q is completely-S , in the sense
that there is a λ ∈ [0,∞)n−1 such that Qλ ∈ (0,∞)n−1 and the same property is
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shared by every principal submatrix of Q; see [28] for several equivalent defini-
tions.

(b) Assume that the matrices Q and Q(2) (restricted to nonzero columns) are
“jointly completely-S ,” in the following sense. For a vector u ∈ R

k and J ⊆ [k],
let uJ ∈ R

|J | denote the vector obtained from u by removing all coordinates of u

whose index is not in J . We assume that for every J ⊆ [n− 1], J �=∅, there exists
γ = γ (J ) ∈ (R+)|J | such that γ · qJ·,j ≥ 1 for every j ∈ J and γ · q

(2),J
·,(k,�) ≥ 1 for

every k, � ∈ J , (k, �) /∈ I(2).

Under Assumption 1—which we discuss in more detail below—we have the
following convergence result.

THEOREM 1. Suppose that Assumption 1 holds, and also that the initial con-
ditions {(XM

1 (0),XM
2 (0), . . . ,XM

n (0)),M > 0} are deterministic and converge to
a limit (x1, x2, . . . , xn) ∈ W as M → ∞. Then the laws of the paths of the parti-
cle systems {(XM

1 (·),XM
2 (·), . . . ,XM

n (·)),M > 0} on D([0,∞),Rn) (the space of
càdlàg paths with values in R

n endowed with the topology of uniform convergence
on compact sets) converge to the law of the unique weak solution of the system
of SDEs

dXi(t) = 1{X1(t)<X2(t)<···<Xn(t)}
√

2a dWi(t) +
n−1∑
j=1

1{Xj (t)=Xj+1(t)}vi,j dt,(4)

i ∈ [n], in W starting from (x1, x2, . . . , xn). Here (W1,W2, . . . ,Wn) is a standard
Brownian motion in R

n.
The solution to (4) evolves as a Brownian motion when away from the boundary

∂W of W , it does not spend a nonempty time interval on ∂W ; however, it satisfies

P
(
L

({
t ≥ 0 :X(t) ∈ ∂W

})
> 0

) = 1,

where L is the Lebesgue measure on [0,∞).

We refer to the solution of (4) with a = 1/2 as sticky Brownian motion in W
with reflection matrix V . We choose this terminology because the SDE (4) gener-
alizes one-dimensional sticky Brownian motion as in [1, 12], and also because it
is consistent with the terminology used in [28] and the references therein dealing
with instantaneously reflecting Brownian motions.

Regarding our assumptions, Assumption 1(a) is a natural condition, which is
necessary for the existence of the limiting stochastic process; see Theorem 3.
Assumption 1(b) [which is stronger; it implies Assumption 1(a)], however, is a
technical condition; it is readily satisfied in many natural situations, but it is not
a necessary condition for the convergence result to hold. For instance, Assump-
tion 1 is satisfied in the natural case when θL

i,j = θR
i,j = θ > 0 for all i ∈ [n],
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j ∈ [n − 1]. See also [3], where essentially the same condition is required and
used in the proof of [3], Theorem 7.7, and where it is shown that this condition is
satisfied if the reflection matrix Q satisfies the Harrison–Reiman condition [13],
and some additional conditions hold. On the other hand, consider the case when
θL
j,j = θR

j+1,j = θ > 0 for all j ∈ [n − 1], and θL
i,j = θR

i,j = 0 otherwise; in words,
suppose that when a collision occurs, all particles not part of the collision “freeze,”
that is, they cannot move until the collision is resolved. It is not hard to see that
Assumption 1(b) cannot hold in this case, although Assumption 1(a) holds, and we
expect that the convergence result holds as well.

In Section 3 we prove a much stronger result than Theorem 1, allowing for
nonexponential interarrival times between the jumps in the processes Pi , Qi , Li,j

and Ri,j , as well as for dependence between the latter processes; see Theorem 7.
This then leads to the definition of a sticky Brownian motion in W whose com-
ponents have unequal drift and diffusion coefficients. In addition, it is not hard
to see from the proof that for each jump parameter θL

i,j or θR
i,j which is zero, we

can choose the jump rate of the corresponding process Li,j or Ri,j to be of order
o(

√
M) (not necessarily identically zero) for the result of Theorem 1 to still hold.

One of the main technical difficulties in the proof of Theorem 1 and its exten-
sion (Theorem 7 in Section 3) is posed by the indicator function appearing in the
diffusion matrix of the limiting process. This is in contrast to the main convergence
result in [20], where the martingale part of the limiting process is a Brownian mo-
tion. Another major difference compared to the setting of [20] is that we consider
a large class of completely-S reflection matrices and are dealing with weak solu-
tions of the limiting stochastic differential equation; whereas in [20] only a special
class of reflection matrices is considered, allowing for a pathwise construction of
the limiting object. Finally, we allow for dependence of interarrival times between
jumps for different particles in Theorem 7 below, which is not addressed in [20].

1.3. Applications. We mention two potential areas of applications for the pro-
cess in (4) and its extensions that appear in Section 2. It is known that reflected
Brownian motions in W give a class of tractable descriptive models for the log-
arithmic market capitalizations (i.e., the logarithms of the total market values of
stocks) of firms in a large equity market; see, for example, [20]. These models
lead to realistic capital distribution curves in the long-run and are also able to pro-
duce a realistic pattern of collisions. In the same spirit, one can think of (4) as
a model for the logarithmic market capitalizations in an equity market in which
the market experiences a slowdown whenever there is a possibility that two firms
will exchange their ranks (described by a collision). For example, one can imagine
a court trial between two firms, the result of which decides which firm becomes
the market leader, leading to a slowdown of the market right before the time of
the verdict as the market participants await the result of the trial. The question of
whether real-world equity markets spend a positive amount of time in collisions



1160 M. Z. RÁCZ AND M. SHKOLNIKOV

[so that the logarithmic market capitalizations should be modeled by the solution
of (4)] or the set of times spent in collisions has zero Lebesgue measure (so that
a reflecting Brownian motion in W is a more appropriate model) is a challenging
statistical problem which should be addressed in future research.

Another area of application is the study of diffusion approximations of storage
and queueing networks. It is well known (see, e.g., the survey [31] and the refer-
ences therein) that reflected Brownian motions in the orthant describe the heavy
traffic limits of many queuing networks such as open queuing networks, single
class networks and feedforward multiclass networks. Moreover, Welch [30] dis-
cusses a situation where a customer of a single server queueing network receives
exceptional service when the server is idle before his arrival and standard service
when the server is busy prior to his arrival. The results in [30], as well as their
extensions to more general exceptional service policies in [22] and [23] show that
the heavy traffic limits of such networks are described by sticky Brownian motions
on the half-line. For further information on queuing networks with exceptional ser-
vice mechanisms we refer the reader to [12, 33] and [23]. Similarly, in the setting
of a multi-server queuing network, one can think of a situation where the servers
provide exceptional service to a customer if the server was idle prior to his arrival,
and where such exceptional service slows down the entire queuing network, for ex-
ample, due to a commonly used resource. In view of the aforementioned results in
the single-server case, we expect sticky Brownian motions in the orthant (R+)n−1,
given by the spacings processes(

X2(·) − X1(·),X3(·) − X2(·), . . . ,Xn(·) − Xn−1(·)),
to arise as heavy-traffic limits of multi-server queueing networks with appropriate
exceptional service policies. We also anticipate the tools developed in this paper to
appear at the heart of the proofs of the corresponding heavy-traffic limit theorems.
In the case that the exceptional service by one of the servers does not affect other
servers, we expect the heavy-traffic limit to be given by a sticky Brownian motion
with a local rather than a global slowdown; see Section 1.4 for further discussion.

1.4. Future directions. A natural direction for future work is to study other
types of sticky interaction between particles. Even in the class of exclusion pro-
cesses in one dimension, there are avenues to be explored. For instance, the ex-
clusion processes described by (2) experience a global slowdown when a collision
occurs, whereas for some applications it would be interesting to consider particle
systems with local slowdown. We believe that the techniques we develop in Sec-
tion 3 would carry over to such a setting with appropriate modifications; however,
the difficulty of proving convergence of such processes to the appropriate con-
tinuous object comes from proving uniqueness for the limiting SDE. We expect
the solution of this SDE to spend a positive amount of time on lower-dimensional
faces of the wedge W , making the analysis of the process more difficult.



STICKY BROWNIAN MOTIONS 1161

1.5. Outline. The rest of the paper is structured as follows. Section 2 is de-
voted to the study of sticky Brownian motions in W . In Section 2.1 we give the
proof of existence and uniqueness of the weak solution to a system of SDEs gen-
eralizing (4). Then, in Section 2.2 we show that the solution is a Markov process
and study the invariant distributions of a suitably normalized version thereof. Sub-
sequently, Section 3 deals with the convergence of exclusion processes to sticky
Brownian motions in W . First in Section 3.1 we prove Theorem 1, and then in
Section 3.2 we state and prove our main result, namely a generalized version of
Theorem 1, which deals with the convergence of exclusion processes with non-
exponential and possibly dependent jump interarrival times to sticky Brownian
motions in W .

2. Multidimensional sticky Brownian motions. This section is devoted to
the study of the system of SDEs

dXi(t) = 1{X1(t)<X2(t)<···<Xn(t)}
(
bi dt + dWi(t)

)
(5)

+
n−1∑
j=1

1{Xj (t)=Xj+1(t)}vi,j dt,

i ∈ [n], where bi , i ∈ [n], are real constants, W = (W1,W2, . . . ,Wn) is an
n-dimensional Brownian motion with zero drift vector and a strictly positive defi-
nite diffusion matrix C = (ci,i′)i,i′∈[n], V = (vi,j )i∈[n],j∈[n−1] is a matrix with real
entries and the initial conditions Xi(0) = xi , i ∈ [n], satisfy (x1, x2, . . . , xn) ∈ W .
We note that the diffusion matrix of the process X is both discontinuous and degen-
erate, so neither existence nor uniqueness of a weak solution to (5) can be obtained
directly from the classical results in [27] or [2].

2.1. Existence and uniqueness. In this subsection, we show that Assump-
tion 1(a) is necessary and sufficient for the existence and uniqueness of a weak
solution to (5). Furthermore, even under Assumption 1(a) one cannot expect a
strong solution to exist. Our proof relies on the classical results of [28] on the exis-
tence and uniqueness of semimartingale reflecting Brownian motions in an orthant;
this connection highlights the importance of Assumption 1(a). We first recall the
main definition and the main result from [28].

DEFINITION 1 ([28], Definition 1.1). Let η ∈ R
d , let 	 be a d × d nonde-

generate covariance matrix, let R be a d × d matrix and for i ∈ [d], let Fi =
{x̃ ∈ (R+)d : x̃i = 0}. For x̃ ∈ (R+)d , a semimartingale reflecting Brownian mo-
tion (SRBM) in the orthant (R+)d associated with the data (η,	,R) that starts
from x̃ is a continuous, (Ft )-adapted, d-dimensional process Z̃ defined on some
filtered probability space (
, (Ft )t≥0,Px̃) such that under Px̃ ,

Z̃(t) = X̃(t) + RỸ (t) ∈ (R+)d for all t ≥ 0,

where:
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(i) X̃ is a d-dimensional Brownian motion with drift vector η and covariance
matrix 	 such that {X̃(t) − ηt,Ft , t ≥ 0} is a martingale and X̃(0) = x̃ Px̃ -a.s.,

(ii) Ỹ is an (Ft )-adapted, d-dimensional process such that Px̃ -a.s. for each
i ∈ [d], the ith component Ỹi of Ỹ satisfies:

(a) Ỹi(0) = 0,
(b) Ỹi is continuous and nondecreasing,
(c) Ỹi can increase only when Z̃ is on the face Fi , that is,∫ t

0
1{Z̃(s)∈(R+)d\Fi} dỸi(s) = 0

for all t ≥ 0.

Ỹ is referred to as the “pushing” process of Z̃.

THEOREM 2 ([28], Theorem 1.3 and Corollary 1.4). There exists a SRBM in
the orthant (R+)d with data (η,	,R) that starts from x̃ ∈ (R+)d if and only if R is
completely-S . Moreover, when it exists, the joint law of any SRBM, together with
its associated pushing process, is unique.

We are now ready to prove our result on the system of SDEs (5).

THEOREM 3. Under Assumption 1(a) there exists a unique weak solution
to (5). Moreover, if Assumption 1(a) does not hold, there is no weak solution to (5).

PROOF. There are two key ideas in the proof. The first is to consider the pro-
cess of spacings(

X2(·) − X1(·),X3(·) − X2(·), . . . ,Xn(·) − Xn−1(·))
and the process

∑n
i=1 Xi(·), which together determine the process X(·). The sec-

ond idea is to consider an appropriate (and naturally arising) time change.

Step 1. We start with the proof of weak existence. First, from Theorem 2 it
follows that there exists a weak solution on a suitable filtered probability space
{
, (Ft )t≥0,P } to the following system of SDEs:

dẐi(t) = (bi+1 − bi)dt + dBi(t) +
n−1∑
j=1

qi,j d�j(t), i ∈ [n − 1],

with initial conditions Ẑi(0) = xi+1 − xi , i ∈ [n − 1], where the vector B =
(B1,B2, . . . ,Bn−1) is a Brownian motion with zero drift vector and diffusion ma-
trix A = (ai,i′)i,i′∈[n−1] given by

ai,i′ = ci,i′ + ci+1,i′+1 − ci,i′+1 − ci+1,i′,(6)
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the �j(·), j ∈ [n − 1], are the semimartingale local times at zero of the processes
Ẑj (·), j ∈ [n − 1], respectively, and recall that qi,j = vi+1,j − vi,j . Note that here
we have used the fact that the matrix Q is completely-S ; see Assumption 1(a).
Next, we can find (after extending the underlying probability space if necessary)
a Brownian motion β̂ = (β̂1, β̂2, . . . , β̂n) with zero drift vector and diffusion matrix
C such that

Bi(·) = β̂i+1(·) − β̂i(·), i ∈ [n − 1].
Therefore, we can define X̂ = (X̂1, X̂2, . . . , X̂n) as the unique process satisfying

n∑
i=1

X̂i(t) =
n∑

i=1

xi +
n∑

i=1

(
bit + β̂i(t) +

n−1∑
j=1

vi,j�j (t)

)
,

(
X̂2(t) − X̂1(t), . . . , X̂n(t) − X̂n−1(t)

) = (
Ẑ1(t), . . . , Ẑn−1(t)

)
,

for all t ≥ 0. Finally, we let

T (t) := t + �(t) := t +
n−1∑
j=1

�j(t), t ≥ 0,

τ (t) := inf
{
s ≥ 0 :T (s) = t

}
, t ≥ 0,

and set X(·) = X̂(τ (·)). Then clearly

Xi(·) − Xi(0) = biτ (·) + β̂i

(
τ(·)) +

n−1∑
j=1

vi,j�j

(
τ(·)), i ∈ [n].(7)

Moreover, we note that τ(·), �(τ(·)) are nondecreasing functions, which induce
nonnegative measures dτ(·), d�(τ(·)) on [0,∞) satisfying

dτ(t) + d�
(
τ(t)

) = dt.(8)

Therefore we have

τ(·) =
∫ τ(·)

0
1{X̂1(t)<X̂2(t)<···<X̂n(t)} dt =

∫ ·
0

1{X1(t)<X2(t)<···<Xn(t)} dτ(t)

=
∫ ·

0
1{X1(t)<X2(t)<···<Xn(t)} dt,

which takes care of the first term on the right-hand side of (7). In addition, the
processes β̂i(τ (·)), i ∈ [n] are martingales with respect to the filtration (Fτ(t))t≥0
with quadratic covariation processes given by

ci,i′τ(·) = ci,i′
∫ ·

0
1{X1(t)<X2(t)<···<Xn(t)} dt, i, i ′ ∈ [n],

where we used the identity derived in the previous display. From the last computa-
tion we can conclude, in particular, that after extending the underlying probability
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space if necessary, we can find a Brownian motion β = (β1, β2, . . . , βn) with zero
drift vector and diffusion matrix C such that

β̂i

(
τ(·)) =

∫ ·
0

1{X1(t)<X2(t)<···<Xn(t)} dβi(t), i ∈ [n].

Finally, we have

�j

(
τ(·)) =

∫ ·
0

1{X̂j (τ (t))=X̂j+1(τ (t))} d�j

(
τ(t)

)
=

∫ ·
0

1{X̂j (τ (t))=X̂j+1(τ (t))}
(
dt − dτ(t)

)
=

∫ ·
0

1{Xj (t)=Xj+1(t)} dt −
∫ τ(·)

0
1{X̂j (t)=X̂j+1(t)} dt

=
∫ ·

0
1{Xj (t)=Xj+1(t)} dt,

for j ∈ [n − 1]. Here the second identity is a consequence of (8) and the fact that
the boundary local times �j ′ , j ′ �= j , do not charge the set {t : X̂j (t) = X̂j+1(t)}
(see the main result, Theorem 1, in [25]); and the fourth identity follows from the
fact that the instantaneously reflecting Brownian motion Ẑ does not spend time
on the boundary of the orthant (R+)n−1 [28], Lemma 2.1. All in all, we can now
conclude that (X,β) is a weak solution to (5).

Step 2. We now turn to the proof of weak uniqueness. To this end, let (X,W)

be any weak solution to (5). Define

σ(t) = inf
{
s ≥ 0 :

∫ s

0
1{X1(a)<X2(a)<···<Xn(a)} da = t

}
, t ≥ 0,

and set X̂(·) = X(σ(·)). Using Lévy’s characterization of Brownian motion, one
verifies that

X̂i(t) = X̂i(0) + bit + Ŵi(t) +
n−1∑
j=1

vi,jLj (t), t ≥ 0,

where Ŵ = (Ŵ1, Ŵ2, . . . , Ŵn) is a Brownian motion with zero drift vector and
diffusion matrix C, and {Lj }j∈[n−1] are nondecreasing processes whose points of
increase are contained in the sets{

t ≥ 0 : X̂j (t) = X̂j+1(t)
}
, j ∈ [n − 1],

respectively. Moreover, the law of X̂ is uniquely determined by the joint law of

(
X̂2(·) − X̂1(·), X̂3(·) − X̂2(·), . . . , X̂n(·) − X̂n−1(·)) and

n∑
i=1

X̂i(·).(9)
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However, by the uniqueness result of Theorem 2 we can identify the first of the
latter two processes as an instantaneously reflected Brownian motion in the or-
thant (R+)n−1, so the joint law of that process and its boundary local times is
uniquely determined. Moreover, the second process can be constructed by using
the first process, its boundary local time processes and an additional independent
one-dimensional standard Brownian motion, so the joint law of the processes in (9)
is uniquely determined. Thus, the law of X̂ is uniquely determined as well. Finally,
the law of X is also uniquely determined as one can verify that X(·) = X̂(τ (·)),
where τ is defined as in step 1 above.

Step 3. Suppose now that Assumption 1(a) does not hold. Then a weak solution
of (5) cannot exist. Indeed, if (X,W) was such a weak solution, we could define
the time change σ(·) as in step 2 above and let X̂(·) = X(σ(·)) as before. Then the
arguments in step 2 would show that the process of spacings(

X̂2(·) − X̂1(·), X̂3(·) − X̂2(·), . . . , X̂n(·) − X̂n−1(·))
is a reflecting Brownian motion in the orthant (R+)n−1 in the sense of [28]. How-
ever, by Theorem 2 the latter process does not exist if the reflection matrix Q is
not completely-S . This is the desired contradiction. �

The following example shows that, even when Assumption 1(a) holds, one can-
not expect a strong solution to (5) to exist.

EXAMPLE 1. Consider the following specification of parameters: n = 2, b1 =
b2 = 0, c1,1 = c2,2 = 1, c1,2 = c2,1 = 0, v1,1 = −1

2 , v2,1 = 1
2 ; that is, the system of

SDEs is

dX1(t) = 1{X1(t)<X2(t)} dW1(t) − 1
21{X1(t)=X2(t)} dt,(10)

dX2(t) = 1{X1(t)<X2(t)} dW2(t) + 1
21{X1(t)=X2(t)} dt,(11)

with W1 and W2 being independent one-dimensional standard Brownian motions.
We claim that this system does not admit a strong solution. It is well known (see
Theorem 3.2 in [5]) that strong existence and weak uniqueness together imply
pathwise uniqueness, so it suffices to show that pathwise uniqueness does not hold
for the system (10)–(11). To this end, we consider the SDE

dZ(t) = 1{Z(t)>0} dβ(t) + 1{Z(t)=0} dt,(12)

where β is a Brownian motion with zero drift and diffusion coefficient 2. The main
result in [6] shows that pathwise uniqueness does not hold for this equation. There-
fore it suffices to argue that pathwise uniqueness for the system (10)–(11) would
imply pathwise uniqueness for equation (12). Indeed, let Z, Z′ be two solutions
of (12) on the same probability space and with respect to the same Brownian mo-
tion β . Extend the probability space so that it supports an independent Brownian
motion W with zero drift and diffusion coefficient 2, and define S, S′ according to

dS(t) = 1{Z(t)>0} dW(t) and dS′(t) = 1{Z′(t)>0} dW(t).
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Finally, set

X1 = S − Z

2
, X2 = S + Z

2

and

X′
1 = S′ − Z′

2
, X′

2 = S′ + Z′

2
.

Then both (X1,X2) and (X′
1,X

′
2) are weak solutions of the system (10)–(11) with

respect to the Brownian motion ((W − β)/2, (W + β)/2). Therefore if pathwise
uniqueness did hold for the system (10)–(11), we would be able to conclude that
X1 = X′

1 and X2 = X′
2 pathwise, and, hence, that Z = Z′ pathwise; in other words,

the solution of (12) would be pathwise unique. This is the desired contradiction.

2.2. Markov property and invariant measures. Having established that the
weak solution X of the system (5) exists and is unique (see Theorem 3), we can
now proceed to study some of its properties. First, we remark that weak existence
and uniqueness imply that the corresponding martingale problem is well posed;
see, for example, Corollary 4.8 and Corollary 4.9 in Chapter 5 of [21]. Therefore,
by Theorem 6.2.2 in [27], the process X is Markovian. In addition, the relation
X(·) = X̂(τ (·)), where X̂ is an instantaneously reflecting Brownian motion in the
wedge W with a nondegenerate diffusion matrix, shows that the process X has the
Harris property (see, e.g., the Appendix of [7]),

∀x, y ∈ W, r > 0 : P
x(∣∣X(t) − y

∣∣ < r for some t ≥ 0
)
> 0.(13)

Moreover, the corresponding property is true for the process of spacings

Z(·) = (
X2(·) − X1(·),X3(·) − X2(·), . . . ,Xn(·) − Xn−1(·)).

Thus Z has a unique invariant distribution provided that it is positive recurrent or,
equivalently, if

Ẑ(·) = (
X̂2(·) − X̂1(·), X̂3(·) − X̂2(·), . . . , X̂n(·) − X̂n−1(·))

is positive recurrent; see [24] and the references therein. By Proposition 2.8 in the
dissertation [15], the latter is the case if and only if

Q−1(b2 − b1, b3 − b2, . . . , bn − bn−1)
T < 0(14)

componentwise. Here, the superscript T stands for the transpose of the vector un-
der consideration. We summarize our findings in the next proposition.

PROPOSITION 4. The processes X and Z are Markovian. Both of them pos-
sess the Harris property. Moreover, the process Z has a unique invariant distribu-
tion if and only if the recurrence condition (14) is satisfied.
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For a wide class of coefficients the invariant distribution of the process Z can be
given explicitly. Let 〈·, ·〉 denote the standard inner product in Euclidean space, that
is, for x, y ∈ R

d , 〈x, y〉 = ∑d
i=1 xiyi , and let Fi := {z ∈ (R+)n−1 : zi = 0} denote

the ith face of the orthant (R+)n−1. With this notation we then have the following
result.

THEOREM 5. Suppose that in addition to (14) the condition

2A = QD + DQT(15)

is satisfied, where A is given by (6) and D = diag(A) (the diagonal matrix, whose
diagonal elements coincide with those of A). Let

γ = 2D−1Q−1(b2 − b1, b3 − b2, . . . , bn − bn−1)
T ,(16)

and write γ = (γ1, . . . , γn−1). Then the invariant distribution of the process Z in
the orthant (R+)n−1 is given by

1

C
e〈γ,z〉

(
dz +

n−1∑
j=1

√
aj,j

2
1{z∈Fj } dzj

)
,(17)

where C = 1−∑n−1
j=1

√
aj,j γj /2∏n−1

j=1(−γj )
is the appropriate normalization constant, and dzj ,

j ∈ [n − 1], are the Lebesgue boundary measures on the faces Fj , j ∈ [n − 1],
respectively.

PROOF. We first transform our process of interest Z in such a way as to make
the diffusion matrix of the transformed process the identity; we refer to [16], Sec-
tion 3.2.1, for similar computations. Let U = (ui,j )i,j∈[n−1] be an orthogonal ma-
trix whose columns are the orthonormal eigenvectors of A, and let G := UT AU , a
diagonal matrix with the eigenvalues of A in its diagonal. Define the transformed
process

Z(·) := G−1/2UT Z(·).
This is a sticky Brownian motion in the cone

S := G−1/2UT (R+)n−1 = {
z ∈R

n−1 :UG1/2z ∈ (R+)n−1}
,

with drift vector μ := G−1/2UT μ, where μ := (b2 − b1, . . . , bn − bn−1)
T , iden-

tity diffusion matrix, and reflection matrix Q := G−1/2UT Q. This transformed
reflection matrix can be decomposed as

Q = (N+T)D−1/2 ≡ (q ·,1, . . . , q ·,n−1),

where

N := G1/2UT D−1/2 ≡ (n·,1, . . . ,n·,n−1),

T := G−1/2UT QD1/2 −N ≡ (t·,1, . . . , t·,n−1).
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The columns of N are unit vectors, since for all j ∈ [n − 1] we have

n−1∑
i=1

n2
i,j =

n−1∑
i=1

(√
gi,iuj,i

1√
aj,j

)2

= 1

aj,j

n−1∑
i=1

gi,iu
2
j,i = 1,(18)

where G = (gi,j )i,j∈[n−1], and in the last equality we used that UGUT = A. Fur-
thermore, the corresponding columns of N and T are orthogonal, since for every
i ∈ [n − 1] we have

nT·,it·,i =
n−1∑
j=1

nj,itj,i =
n−1∑
j=1

√
gj,jui,j

1√
ai,i

n−1∑
k=1

1√
gj,j

uk,j qk,i
√

ai,i −
n−1∑
j=1

n2
j,i

=
n−1∑
k=1

qk,i

n−1∑
j=1

ui,juk,j − 1 =
n−1∑
k=1

qk,i1{k=i} − 1 = qi,i − 1 = 0,

where we used (18), the fact that U is orthogonal, and that diag(Q) = I , which
follows from (15). In fact, n·,i is the inward unit normal to the ith face F i :=
G−1/2UT Fi of the new state space S . To see this, let w ∈ Fi , and let v :=
G−1/2UT w ∈ F i . Then

nT·,iv =
n−1∑
j=1

nj,ivj =
n−1∑
j=1

√
gj,jui,j

1√
ai,i

n−1∑
k=1

1√
gj,j

uk,jwk

= 1√
ai,i

n−1∑
k=1

wk

n−1∑
j=1

ui,juk,j = 1√
ai,i

n−1∑
k=1

wk1{k=i} = 1√
ai,i

wi = 0,

where the last equality is because w ∈ Fi . Thus the ith column q ·,i of the new
reflection matrix Q is decomposed into components that are normal and tangential
to F i ,

q ·,i = 1√
ai,i

(n·,i + t·,i).(19)

The advantage of this transformation is that the setup of the new process Z fits
precisely into the framework of Harrison and Williams [14], who studied the sta-
tionary distribution of reflected Brownian motion with identity diffusion matrix in
a convex polyhedral domain. Their main result is that the stationary distribution
is of exponential form if the reflection matrix satisfies a certain skew symmetry
condition, and they give explicit formulas for the exponent. The main difference
between their setting and ours is that the process we study is sticky at the boundary
of the domain, as opposed to reflecting instantaneously, as is the case in [14]. How-
ever, apart from taking care of this distinction at the boundary, the same methods
and computations apply.
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In particular, we can plug our expressions into the formulas of Harrison and
Williams [14] to arrive at the skew symmetry condition for our process, and also
to find the appropriate exponent. First, we have

N
T
T+T

T
N= D−1/2(

QD + DQT − 2A
)
D−1/2.(20)

The skew symmetry condition of Harrison and Williams (see [14], equation (1.3))
says that the left-hand side of (20) is the zero matrix, which is the same as our
condition (15). Second, plugging in to [14], equation (4.9), the γ arising in the
exponent of the stationary distribution of exponential form for the transformed
process Z should be

γ = 2
(
I − (

N
T )−1

T
T )−1

μ = 2G1/2UT D−1Q−1μ,(21)

and thus the γ for the original process Z should be

γ = UG−1/2γ = 2D−1Q−1μ,

just as in (16).
In the remainder of the proof, we go through the computations of [14] as applied

to our setting. Let L := 1
2� + μ · ∇ , and for j ∈ [n − 1], let Dj := q ·,j · ∇ . The

generator L of the sticky Brownian motion Z can then be written as

L = L1{S\∂S} +
n−1∑
j=1

Dj 1{Fj }.

Let p(z) := exp(〈γ , z〉) for z ∈ S . In order to show that (17) is invariant for Z, we
must show that for every f ∈ C∞

c (S), we have∫
S

pLf dz +
n−1∑
j=1

√
aj,j

2

∫
Fj

pDj f dzj = 0,(22)

where for j ∈ [n − 1], dzj is the surface measure on the face Fj . Define L∗ :=
1
2� − μ · ∇ . Using Green’s second identity and the divergence theorem, we get
that for every f ∈ C∞

c (S), we have∫
S

pLf dz =
∫
S

f L∗p dz

(23)

+ 1

2

n−1∑
j=1

∫
Fj

(
f

∂p

∂n·,j
− p

∂f

∂n·,j
− 2μ · n·,j f p

)
dzj ,

where we used ∂/∂n·,j ≡ n·,j ·∇ to denote differentiation in the inward unit normal
direction on the face Fj . Now L∗p = (1

2 |γ |2 − μ · γ )p = 0, since using (21) we
have that

1
2 |γ |2 − μ · γ = 1

2

(
N

−1
γ

)T
N

T
T

(
N

−1
γ

)
,
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which is zero, since N
T
T is skew symmetric due to (20) and our condition (15).

Plugging (23) back into (22) and using (19) we get that showing (22) is equivalent
to showing that for every f ∈ C∞

c (S), we have

n−1∑
j=1

∫
Fj

{
f

(
(n·,j − t·,j ) · ∇p − 2μ · n·,jp

) + ∇ · (t·,jpf )
}

dzj = 0.(24)

The relationship (21) between γ and μ implies that γ T (N−T) − 2μT N = 0, and
thus for every j ∈ [n − 1] we have (n·,j − t·,j ) · ∇p − 2μ · n·,jp = 0. Since t·,j is
parallel to the face Fj , the divergence in (24) is the same as the divergence taken
in Fj . Thus, by applying the divergence theorem on each face Fj , it follows that
showing (24) is equivalent to showing that for every f ∈ C∞

c (S), we have

n−1∑
j=1

∑
1≤k<j

∫
Fj,k

(t·,j · nj,k + t·,k · nk,j )pf dσ j,k = 0,(25)

where Fj,k = Fj ∩Fk , σ j,k denotes (n−3)-dimensional surface measure on Fj,k ,
and nj,k denotes the unit vector that is normal to both Fj,k and n·,j , and points into
the interior of Fj from Fj,k . In fact, nj,k must lie in the two-dimensional space
spanned by n·,j and n·,k , and can be determined uniquely,

nj,k = (
n·,k − nT·,jn·,kn·,j

)
/
(
1 − (

nT·,jn·,k
)2)1/2

.

Consequently, since N
T
T is skew symmetric, we have t·,j · nj,k + t·,k · nk,j = 0

for all 1 ≤ k < j ≤ n − 1, showing that (25) indeed holds. �

3. Convergence and general setup. This section is divided into two parts.
In the first part (Section 3.1) we prove the convergence theorem (Theorem 1) as
stated in the Introduction. Then in the second part (Section 3.2) we describe a
much larger class of particle systems that converge to appropriate sticky Brownian
motions in W .

3.1. Proof of the convergence theorem. Given the uniqueness of a weak solu-
tion to the system of SDEs (4) as proved in Theorem 3, Theorem 1 is a consequence
of Proposition 6 below. To state and obtain the latter, we study the following de-
composition. For each i ∈ [n] we can write

XM
i (t) = XM

i (0) + AM
i (t) +

n−1∑
j=1

C
R,M
i,j (t) −

n−1∑
j=1

C
L,M
i,j (t)

(26)

+
n−1∑
j=1

�
R,M
i,j (t) −

n−1∑
j=1

�
L,M
i,j (t),
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where, for j ∈ [n − 1],
AM

i (t) :=
∫ t

0
1{XM

k (s)+(1/
√

M)<XM
k+1(s),k∈[n−1]} d

(
Pi(s) − Qi(s)

)
,(27)

C
R,M
i,j (t) := θR

i,j I
R,M
i,j (t)

(28)

:= θR
i,j

∫ t

0
1{XM

i (s)+(1/
√

M)<XM
i+1(s),X

M
j (s)+(1/

√
M)=XM

j+1(s)} ds

and

�
R,M
i,j (t)

(29)

:=
∫ t

0
1{XM

i (s)+(1/
√

M)<XM
i+1(s),X

M
j (s)+(1/

√
M)=XM

j+1(s)} d
(
Ri,j (s) − θR

i,j s
)
,

and the processes C
L,M
i,j , I

L,M
i,j and �

L,M
i,j are defined similarly to C

R,M
i,j , I

R,M
i,j and

�
R,M
i,j , respectively. For m ∈ N, let Dm ≡ D([0,∞),Rm). We have the following

convergence result.

PROPOSITION 6. Assume that Assumption 1 holds and that the initial con-
ditions {XM(0),M > 0} are deterministic and converge to a limit x ∈ W as
M → ∞. Then the family{(

XM,AM, IL,M, IR,M,�L,M,�R,M)
,M > 0

}
(30)

is tight in D4n2−2n. Moreover, every limit point(
X∞,A∞, IL,∞, IR,∞,�L,∞,�R,∞)

satisfies the following for each i ∈ [n]:
X∞

i (·) =
∫ ·

0
1{X∞

1 (s)<···<X∞
n (s)}

√
2a dWi(s)

(31)

+
n−1∑
j=1

vi,j

∫ ·
0

1{X∞
j (s)=X∞

j+1(s)} ds,

A∞
i (·) =

∫ ·
0

1{X∞
1 (s)<X∞

2 (s)<···<X∞
n (s)}

√
2a dWi(s),(32)

I
L,∞
i,j (·) =

∫ ·
0

1{X∞
j (s)=X∞

j+1(s)} ds, j ∈ [n − 1] \ {i − 1},(33)

I
R,∞
i,j (·) =

∫ ·
0

1{X∞
j (s)=X∞

j+1(s)} ds, j ∈ [n − 1] \ {i},(34)

I
L,∞
i,i−1(·) = I

R,∞
i,i (·) = 0,

�
L,∞
i,j (·) = �

R,∞
i,j (·) = 0, j ∈ [n − 1],

with a suitable n-dimensional standard Brownian motion W = (W1, . . . ,Wn).
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PROOF. Step 1. The tightness of the family in (30) can be verified using the
necessary and sufficient conditions of Corollary 3.7.4 in [9]. First, note that for
i ∈ [n] and j ∈ [n − 1], the processes Pi(·) − Qi(·), as well as (M1/4(Ri,j (t) −
θR
i,j t), t ≥ 0) and (M1/4(Li,j (t) − θL

i,j t), t ≥ 0) all converge to suitable one-
dimensional Brownian motions in the limit M → ∞. Therefore, the conditions of
Corollary 3.7.4 in [9] hold for the corresponding families of processes indexed by
M > 0. One can then bound the indicator functions appearing in the integrands of
the integrals in (27), (28) and (29) between 0 and 1 appropriately to show that the
same conditions hold for the family {(AM, IL,M, IR,M,�L,M,�R,M),M > 0},
which is thus tight in D4n2−3n. For example, for i ∈ [n] and t ≥ 0 we have that∣∣AM

i (t)
∣∣ ≤

∫ t

0
sgn

(
Pi(s) − Qi(s)

)
d
(
Pi(s) − Qi(s)

)
.

The expression on the right-hand side converges to
√

2a
∫ t

0 sgn(B(s))dB(s) as
M → ∞, where B is a standard one-dimensional Brownian motion. By Tanaka’s
formula, this is equal to

√
2a(|B(t)| − L(t)), where L(·) is the local time process

at 0 of B(·). Consequently, the family of processes {AM,M > 0} is tight. Verify-
ing tightness of the other families of processes can be done similarly. In view of
decomposition (26), the first statement of the proposition now readily follows.

Step 2. Now fix a limit point (X∞,A∞, IL,∞, IR,∞,�L,∞,�R,∞) and to sim-
plify notation assume that it is the limit of the whole family (30) as M → ∞.

We start with a few simple observations about the limit point under consid-
eration. Note first that, for any fixed M > 0, the jumps of all components of
(XM,AM, IL,M, IR,M,�L,M,�R,M) are bounded above in absolute value by

1√
M

, so all components of the limit point must have continuous paths. Moreover,

for every fixed t ≥ 0, the family {AM(t),M > 0} is uniformly integrable due to the
estimate

E
[
AM

i (t)2] = E
[[

AM
i

]
(t)

]
= E

[∫ t

0
1{XM

k (s)+(1/
√

M)<XM
k+1(s),k∈[n−1]} d[Pi − Qi](s)

]
= E

[∫ t

0
1{XM

k (s)+(1/
√

M)<XM
k+1(s),k∈[n−1]}

1√
M

(dPi + dQi)(s)

]
≤ 2at,

i ∈ [n], where [·] denotes the quadratic variation process of a process with paths
in D1. This and the fact that AM is a martingale for any fixed M > 0 show that
A∞ is a martingale with respect to its own filtration; see, for example, [19], Propo-
sition IX.1.12.

Next, we observe that, as limits of nondecreasing processes, I
L,∞
i,j and I

R,∞
i,j

must be nondecreasing processes themselves for every i ∈ [n], j ∈ [n − 1], and
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consequently they are also of finite variation. Furthermore, for all i ∈ [n], j ∈ [n−
1], the quadratic variation processes of the martingales �

L,M
i,j and �

R,M
i,j satisfy

∀t ≥ 0 : lim
M→∞E

[[
�

L,M
i,j

]
(t)

] = 0 and lim
M→∞E

[[
�

R,M
i,j

]
(t)

] = 0.

Therefore, the distributional limits

�
L,∞
i,j ≡ lim

M→∞�
L,M
i,j , �

R,∞
i,j ≡ lim

M→∞�
R,M
i,j

in D1 exist and are identically equal to zero.
Finally, the two observations of the previous paragraph, together with the de-

composition (26), show that for i, i ′ ∈ [n] the quadratic covariation processes
〈X∞

i ,X∞
i′ 〉 and 〈A∞

i ,A∞
i′ 〉 are in fact equal. In particular, we have that 〈X∞

i 〉 =
〈A∞

i 〉 for i ∈ [n].
Step 3. In order to show (32), we study the quadratic covariation processes

〈X∞
i ,X∞

i′ 〉 = 〈A∞
i ,A∞

i′ 〉, i, i′ ∈ [n]. We first claim that 〈A∞
i ,A∞

i′ 〉 = 0 whenever
i �= i ′. To this end, it suffices to show that for any such pair of indices A∞

i (·)A∞
i′ (·)

is a martingale with respect to its own filtration. The latter is the limit in D1 of
the family of martingales {AM

i (·)AM
i′ (·),M > 0} by definition, so it is enough to

prove that, for any fixed t ≥ 0, the random variables {AM
i (t)AM

i′ (t),M > 0} are
uniformly integrable. The latter is a consequence of the following chain of esti-
mates:

E
[
AM

i (t)2AM
i′ (t)2]

= E

[∫ t

0
AM

i (s)2 dAM
i′ (s)2

]
+E

[∫ t

0
AM

i′ (s)2 dAM
i (s)2

]
= E

[∫ t

0
AM

i (s)2 d
[
AM

i′
]
(s)

]
+E

[∫ t

0
AM

i′ (s)2 d
[
AM

i

]
(s)

]
≤ E

[∫ t

0
AM

i (s)2 d[Pi′ − Qi′ ](s)
]

+E

[∫ t

0
AM

i′ (s)2 d[Pi − Qi](s)
]

= E

[∫ t

0
AM

i (s)2 1√
M

(dPi′ + dQi′)(s)
]

+E

[∫ t

0
AM

i′ (s)2 1√
M

(dPi + dQi)(s)

]

= E

[∫ t

0
AM

i (s)22a ds

]
+E

[∫ t

0
AM

i′ (s)22a ds

]
≤ 2a

∫ t

0

(
E

[[Pi − Qi](s)] +E
[[Pi′ − Qi′ ](s)]) ds

= 2a

∫ t

0
4as ds = 4a2t2.
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We next aim to evaluate 〈A∞
i 〉, i ∈ [n]. To this end, we first show that for any

fixed i ∈ [n] and t ≥ 0, the random variables {AM
i (t)2,M > 0} are uniformly inte-

grable. By Itô’s lemma for (not necessarily continuous) semimartingales we have
that for any fixed t ≥ 0,

AM
i (t)4 =

∫ t

0
4AM

i (s−)3 dAM
i (s) + 1

2

∫ t

0
12AM

i (s−)2 d
[
AM

i

]
(s)

+ ∑
s≤t

{(
AM

i (s)4 − AM
i (s−)4) − 4AM

i (s−)3(
AM

i (s) − AM
i (s−)

)
− 6AM

i (s−)2(
AM

i (s) − AM
i (s−)

)2}
.

Taking expectations on both sides and dropping the third line of the previous dis-
play, we arrive at the following estimate:

E
[
AM

i (t)4] ≤ E

[∫ t

0
4AM

i (s−)3 dAM
i (s)

]
+E

[∫ t

0
6AM

i (s−)2 d
[
AM

i

]
(s)

]
+E

[∑
s≤t

{(
AM

i (s)4 − AM
i (s−)4)

− 4AM
i (s−)3(

AM
i (s) − AM

i (s−)
)}]

.

The first term on the right-hand side is equal to zero, since AM
i is a martingale

starting at zero. We can upper bound the second term on the right-hand side using
the inequality d[AM

i ](s) ≤ 1√
M

d(Pi + Qi)(s). Finally, we can upper bound the

third expectation on the right-hand side using the identity x4 − y4 − 4y3(x − y) =
(x − y)2(x2 + 2xy + 3y2), the fact that the jumps of the process AM

i are of size
1√
M

, and the fact that AM
i (s) − AM

i (s−) ≤ d(Pi + Qi)(s). We then arrive at the
estimate

E
[
AM

i (t)4] ≤ E

[∫ t

0

(
3AM

i (s)2 + 11AM
i (s−)2) 1√

M
d(Pi + Qi)(s)

]
,

and the right-hand side can now be bounded above by a constant depending only on
a and t by arguing as above when estimating E[AM

i (t)2AM
i′ (t)2]. Thus indeed the

random variables {AM
i (t)2,M > 0} are uniformly integrable. Putting this together

with the fact that the functional

(ω1,ω2, . . . ,ωn) �→
∫ t2

t1

1{ω1(s)<···<ωn(s)} ds
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on Dn is lower semicontinuous and using the Portmanteau theorem, we have for
each i ∈ [n] that[
G

(
A∞)(

A∞
i (t2)

2 − A∞
i (t1)

2 − 2a

∫ t2

t1

1{X∞
1 (s)<···<X∞

n (s)} ds

)]

= lim
ε↓0

E

[
G

(
A∞)(

A∞
i (t2)

2 − A∞
i (t1)

2

− 2a

∫ t2

t1

1{X∞
k (s)+ε<X∞

k+1(s),k∈[n−1]} ds

)]

≥ lim sup
M→∞

E

[
G

(
AM)(

AM
i (t2)

2 − AM
i (t1)

2

− 2a

∫ t2

t1

1{XM
k (s)+(1/

√
M)<XM

k+1(s),k∈[n−1]} ds

)]

= lim sup
M→∞

E

[
G

(
AM)(

AM
i (t2)

2 − AM
i (t1)

2

−
∫ t2

t1

1{XM
k (s)+(1/

√
M)<XM

k+1(s),k∈[n−1]} d[Pi − Qi](s)
)]

= lim sup
M→∞

E
[
G

(
AM)(

AM
i (t2)

2 − AM
i (t1)

2 − [
AM

i

]
(t2) + [

AM
i

]
(t1)

)] = 0

for any nonnegative continuous bounded functional G on Dn measurable with re-
spect to the σ -algebra generated by the coordinate mappings on Dn([0, t1]). There-
fore, recalling from the end of step 2 of the proof that 〈X∞

i 〉 = 〈A∞
i 〉, we conclude

that

∀0 ≤ t1 < t2 :
〈
X∞

i

〉
(t2) − 〈

X∞
i

〉
(t1) ≥ 2a

∫ t2

t1

1{X∞
1 (s)<···<X∞

n (s)} ds(35)

holds with probability one. On the other hand,

E
[
G

(
A∞)(

A∞
i (t2)

2 − A∞
i (t1)

2 − 2a(t2 − t1)
)]

= lim
M→∞E

[
G

(
AM)(

AM
i (t2)

2 − AM
i (t1)

2 − 2a(t2 − t1)
)]

= lim
M→∞E

[
G

(
AM)(

AM
i (t2)

2 − AM
i (t1)

2 − [Pi − Qi](t2) + [Pi − Qi](t1))]
≤ 0

for any functional G on Dn as above. Hence

∀0 ≤ t1 < t2 :
〈
X∞

i

〉
(t2) − 〈

X∞
i

〉
(t1) ≤ 2a(t2 − t1)(36)

must hold with probability 1.
In view of (36), we see that in order to improve (35) to an equality, it suf-

fices to show that the measure d〈X∞
i 〉 = d〈A∞

i 〉 assigns zero mass to the sets
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{t ≥ 0 :X∞
j (t) = X∞

j+1(t)}, j ∈ [n − 1], with probability one. To this end, we first
recall that for every i ∈ [n] the square integrable martingale A∞

i is the limit in
D1 of the square integrable martingales {AM

i ,M > 0}, and the random variables
{AM

i (t)2,M > 0} are uniformly integrable for any fixed t ≥ 0. Therefore 〈A∞
i 〉 is

the limit in D1 of {[AM
i ],M > 0}, and so by the Portmanteau theorem,

E
[(〈

A∞
i

〉
(t) − 〈

A∞
i′

〉
(t)

)2]
≤ lim inf

M→∞ E
[([

AM
i

]
(t) − [

AM
i′

]
(t)

)2]
≤ lim inf

M→∞ E

[(∫ t

0
1{XM

k (s)+(1/
√

M)<XM
k+1(s),k∈[n−1]}

× 1√
M

(dPi + dQi − dPi′ − dQi′)(s)
)2]

= lim inf
M→∞ E

[∫ t

0
1{XM

k (s)+(1/
√

M)<XM
k+1(s),k∈[n−1]}

× 1

M
d[Pi + Qi − Pi′ − Qi′ ](s)

]
≤ lim inf

M→∞
1

M3/2E
[
Pi(t) + Qi(t) + Pi′(t) + Qi′(t)

] = 0

for any fixed i, i′ ∈ [n] and t ≥ 0 with probability one. In view of the path continu-
ity of the processes 〈X∞

i 〉, i ∈ [n], this implies〈
X∞

1
〉 = 〈

X∞
2

〉 = · · · = 〈
X∞

n

〉
with probability one. To conclude the argument, we use the occupation time for-
mula for continuous semimartingales (see, e.g., [26], Theorem VI.1.6), which
states that if Y is a continuous semimartingale, and φ is a positive Borel function,
then a.s. for every t ≥ 0 we have∫ t

0
φ

(
Y(s)

)
d〈Y 〉(s) =

∫ ∞
−∞

φ(a)La(t)da,

where La(·) is the local time process at a of Y(·). In particular, the choice of
φ(a) = 1{a=0} gives that ∫ t

0
1{Y (s)=0} d〈Y 〉(s) = 0,

and now choosing Y(·) = X∞
j+1(·) − X∞

j (·) this implies that the measure

d
〈
X∞

j+1 − X∞
j

〉 = d
〈
X∞

j+1
〉 + d

〈
X∞

j

〉 = 2 d
〈
X∞

j

〉 = 2 d
〈
X∞

i

〉
assigns zero mass to the set {t ≥ 0 :X∞

j (t) = X∞
j+1(t)} with probability one.

Hence, equality must hold in (35). The representation (32) with a suitable standard
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Brownian motion W = (W1,W2, . . . ,Wn) now readily follows from the Martin-
gale Representation theorem in the form of Theorem 4.2 in Chapter 3 of [21].

Step 4. We now turn to the proof of (31), (33) and (34). To this end, recall-
ing the ghost particles XM

0 (·) ≡ −∞ and XM
n+1(·) ≡ ∞ introduced for notational

convenience, for any M > 0, i ∈ {0,1, . . . , n} and j ∈ [n − 1], define

I
M,1
j (·) :=

∫ ·
0

1{XM
j (s)+(1/

√
M)=XM

j+1(s)} ds,

I
M,2
i,j (·) :=

∫ ·
0

1{XM
i (s)+(1/

√
M)=XM

i+1(s),X
M
j (s)+(1/

√
M)=XM

j+1(s)} ds.

Then for any i ∈ [n], j ∈ [n − 1], we have the decompositions

I
L,M
i,j (·) := I

M,1
j (·) − I

M,2
i−1,j (·),

I
R,M
i,j (·) := I

M,1
j (·) − I

M,2
i,j (·).

It is now easy to check that for each i ∈ {0,1, . . . , n}, j ∈ [n − 1], the families
of processes {IM,1

j ,M > 0} and {IM,2
i,j ,M > 0} satisfy the tightness criterion of

Corollary 3.7.4 in [9]. So, after passing to a subsequence if necessary, we obtain the
existence of suitable limits I

∞,1
j and I

∞,2
i,j , respectively; for notational convenience

we assume that the full families of processes converge jointly to the respective limit
points.

The limiting processes inherit many properties of the prelimit processes. First,
clearly the limits are nondecreasing processes and inherit the property that for
every i ∈ {0,1, . . . , n},

∀0 ≤ t1 < t2 : I
∞,2
i,j (t2) − I

∞,2
i,j (t1) ≤ I

∞,1
j (t2) − I

∞,1
j (t1).(37)

Second, the prelimit processes satisfy∫ ∞
0

1{XM
j (t)+(1/

√
M)<XM

j+1(t)} dI
M,1
j (t) = 0,

(38) ∫ ∞
0

(1{XM
i (t)+(1/

√
M)<XM

i+1(t)} + 1{XM
j (t)+(1/

√
M)<XM

j+1(t)})dI
M,2
i,j (t) = 0,

and from these we have that the limiting processes satisfy∫ ∞
0

1{X∞
j (t)<X∞

j+1(t)} dI
∞,1
j (t) = 0,(39) ∫ ∞

0
(1{X∞

i (t)<X∞
i+1(t)} + 1{X∞

j (t)<X∞
j+1(t)})dI

∞,2
i,j (t) = 0.(40)

These properties can be shown by arguing as in the second half of the proof of
Theorem 4.1 in [32] (see also the proof of Proposition 9 in [20]); we provide a
sketch on how to obtain (39) from (38), and (40) follows similarly. We first use
the Skorokhod representation theorem [9], Theorem 3.1.8, and the fact that the



1178 M. Z. RÁCZ AND M. SHKOLNIKOV

limiting processes (X∞, I∞,1, I∞,2, IL,∞, IR,∞) are a.s. continuous to replace
the sequence of processes {(XM, IM,1, IM,2, IL,M, IR,M),M > 0} by one that
has the same distribution and which a.s. converges uniformly on compact time
intervals. Let {fm}m≥1 be a sequence of continuous functions such that for every m,
fm :R → [0,1], fm(x) = 0 for x ≤ 1/m and fm(x) = 1 for x ≥ 2/m. By passing
to the m → ∞ limit, in order to show (39) it suffices to show that for each t ≥ 0,
j ∈ [n − 1], and m ≥ 1, a.s.∫ t

0
fm

(
X∞

j+1(s) − X∞
j (s)

)
dI

∞,1
j (s) = 0.(41)

To do this, fix j ∈ [n − 1], m ≥ 1 and t ≥ 0. For M > m2, (38) implies that a.s.∫ t

0
fm

(
XM

j+1(s) − XM
j (s)

)
dI

M,1
j (s) = 0,

and thus to show (41) it suffices to show that a.s.∫ t

0
fm

(
XM

j+1(s) − XM
j (s)

)
dI

M,1
j (s)

(42)

→
∫ t

0
fm

(
X∞

j+1(s) − X∞
j (s)

)
dI

∞,1
j (s)

as M → ∞. The almost sure convergence assumed above implies that a.s. as
M → ∞, XM

j+1(·) − XM
j (·) → X∞

j+1(·) − X∞
j (·) uniformly on compacts, and

since fm is uniformly continuous, we have that a.s. as M → ∞, fm(XM
j+1(·) −

XM
j (·)) → fm(X∞

j+1(·) − X∞
j (·)) uniformly on compacts. We also have that a.s.

as M → ∞, I
M,1
j (·) → I

∞,1
j (·) uniformly on compacts, and the remaining details

of showing (42) are as in the end of the proof of Theorem 4.1 in [32].
Next, we define the time change

σ(t) = inf
{
s ≥ 0 :

∫ s

0
1{X∞

1 (r)<X∞
2 (r)<···<X∞

n (r)} dr = t

}
, t ≥ 0

and then let X̂∞(·) = X∞(σ (·)), Î∞,1(·) = I∞,1(σ (·)) and Î∞,2(·) = I∞,2(σ (·)).
Using Lévy’s characterization of Brownian motion, we conclude that the compo-
nents of X̂∞ admit the decomposition

X̂∞
i (·) = X̂∞

i (0) + √
2aŴi(·) +

n−1∑
j=1

vi,j Î
∞,1
j (·)

+
n−1∑
j=1

j �=i−1

θL
i,j Î

∞,2
i−1,j (·) −

n−1∑
j=1
j �=i

θR
i,j Î

∞,2
i,j (·)



STICKY BROWNIAN MOTIONS 1179

with Ŵ = (Ŵ1, Ŵ2, . . . , Ŵn) being a suitable standard Brownian motion. As we
shall show shortly, for every i ∈ [n] we have

Î
∞,2
i,j (·) ≡ 0, j ∈ [n − 1] \ {i},(43)

and thus the decomposition simplifies to

X̂∞
i (·) = X̂∞

i (0) + √
2aŴi(·) +

n−1∑
j=1

vi,j Î
∞,1
j (·).

We can then identify the process of spacings(
X̂∞

2 (·) − X̂∞
1 (·), X̂∞

3 (·) − X̂∞
2 (·), . . . , X̂∞

n (·) − X̂∞
n−1(·)

)
as a reflected Brownian motion in the orthant (R+)n−1 with reflection matrix Q

(recall from Section 1.2 that qj,j ′ = vj+1,j ′ − vj,j ′ for j, j ′ ∈ [n − 1]), and the

processes Î
∞,1
j (·), j ∈ [n− 1], with its boundary local times. At this point one can

argue as in step 2 in the proof of Theorem 3 to obtain the representations (31), (33)
and (34).

Thus what is left is to show (43). For j ∈ [n − 1] let Ẑj (·) = X̂∞
j+1(·) − X̂∞

j (·),
thus Ẑ(·) = (Ẑ1(·), . . . , Ẑn−1(·)) is the process of spacings. Due to (40), show-
ing (43) reduces to showing that∫ ∞

0
1{Ẑi (t)=Ẑj (t)=0} dÎ

∞,2
i,j (t) = 0.(44)

This can be done by generalizing the proof of Theorem 1 in [25], along the lines
of [3], Theorem 7.7, and [20], Lemma 1, and, in particular, it uses the Lyapunov
functions constructed in the proof of Lemma 4 in [25]. Here we provide a sketch
of the proof, and refer to [3, 25] and [20] for details. This is the only point in our
proof where we use Assumption 1(b).

First we introduce some notation to simplify the representation of Ẑ. For
i ∈ [n − 1], let B̂i(·) := √

2a(Ŵi+1(·) − Ŵi(·)); then B̂ := (B̂1, . . . , B̂n−1) is a
Brownian motion with mean zero and diffusion matrix A = (ai,j )

n−1
i,j=1 given by

ai,j :=
⎧⎪⎨⎪⎩

4a, if i = j ,

−2a, if |i − j | = 1,

0, otherwise.

In the following we think of Î∞,2 as an (R+)(n−1)2
-valued process whose compo-

nents are indexed by ordered pairs (i, j), i, j ∈ [n−1], and the component indexed
by (i, j) is Î

∞,2
i,j (·). Recalling the definition of the matrix Q(2) from Section 1.2,

we can write Ẑ as

Ẑ(·) = Ẑ(0) + B̂(·) + QÎ∞,1(·) + Q(2)Î∞,2(·).



1180 M. Z. RÁCZ AND M. SHKOLNIKOV

Then by Itô’s formula, for any function f that is twice continuously differentiable
in some domain containing (R+)n−1 we have that a.s. for all t ≥ 0,

f
(
Ẑ(t)

) − f
(
Ẑ(0)

)
=

∫ t

0
∇f

(
Ẑ(s)

)
dB̂(s) +

n−1∑
j=1

∫ t

0
q·,j · ∇f

(
Ẑ(s)

)
dÎ

∞,1
j (s)

+
n−1∑

k,�=1

∫ t

0
q

(2)
·,(k,�) · ∇f

(
Ẑ(s)

)
dÎ

∞,2
k,� (s) +

∫ t

0
Lf

(
Ẑ(s)

)
ds,

where recall that q·,j is the j th column of Q, q
(2)
·,(k,�) is the column of Q(2) corre-

sponding to index (k, �) and

L = 1

2

n−1∑
i,j=1

ai,j

∂2

∂xi ∂xj

.

We apply Itô’s formula to an appropriately defined family of functions, just as
in [25]. Let γ = γ ([n − 1]) ∈ (R+)n−1 be the vector guaranteed by Assump-
tion 1(b) for J = [n−1]. Let δ := QT γ ; by assumption δ ∈ [1,∞)n−1. Define α =
Aγ . For each x ∈ (R+)n−1 and r ∈ (0,1), let d2(x, r) := (x + rα)T A−1(x + rα).
Then, for each ε ∈ (0,1), define

φε(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2 − (n − 1)

∫ 1

ε
r(n−1)−2(

d2(x, r)
)(2−(n−1))/2 dr,

if n − 1 ≥ 3,
1

2

∫ 1

ε
ln

(
d2(x, r)

)
dr, if n − 1 = 2.

(45)

For each ε ∈ (0,1), φε is twice continuously differentiable in some domain con-
taining (R+)n−1, and on each compact subset of (R+)n−1 it is bounded, uniformly
in ε. Moreover, we have that Lφε = 0 in some domain containing (R+)n−1, due to
the fact that the integrands in (45) are L-harmonic functions of x ∈ R

n−1 \ {−rα}.
Now, with ‖ · ‖ denoting the Euclidean norm in R

n−1, define for each m ∈ N the
stopping time

τm := inf
{
t ≥ 0 :

∥∥Ẑ(t)
∥∥ ≥ m or Î

∞,1
j (t) ≥ m for some j

} ∧ m.

Applying Itô’s formula to the function φε and the stopping time τm, we get that
a.s.

φε

(
Ẑ(τm)

) − φε

(
Ẑ(0)

) =
∫ τm

0
∇φε

(
Ẑ(s)

)
dB̂(s)

+
n−1∑
j=1

∫ τm

0
q·,j · ∇φε

(
Ẑ(s)

)
dÎ

∞,1
j (s)(46)

+
n−1∑

k,�=1

∫ τm

0
q

(2)
·,(k,�) · ∇φε

(
Ẑ(s)

)
dÎ

∞,2
k,� (s).
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Since B̂ has no drift and φε and its first derivatives are bounded on each compact
subset of (R+)n−1, the definition of the stopping time τm implies that the stochastic
integral with respect to dB̂ in (46) has zero expectation. To bound the other terms
on the right-hand side of (46) it is necessary to bound the directional derivatives
of φε; this is exactly what is done in [25], pages 93–95. In particular, the results
of [25] give two bounds. First, for every j ∈ [n− 1] there exists a constant ĉj < ∞
such that for all x ∈ (R+)n−1 and all ε ∈ (0,1),

q·,j · ∇φε(x) ≥ −ĉj .

Here the constant ĉj depends on A, Q, γ , and δ, but does not depend on x nor ε;
see [25], equation (24). Next, for j ∈ [n−1] let βj = δj /‖A−1q·,j‖. Then for every
j ∈ [n − 1] there exists a constant cj > 0 such that for all x ∈ (R+)n−1 satisfying
‖x‖ < εβj ,

q·,j · ∇φε(x) ≥ −cj (ln ε + 1).(47)

Here the constant cj depends on A, Q, γ , δ and βj , but does not depend on x nor ε.
Note that for ε small the term on the right-hand side of (47) is large and positive.
Furthermore, due to Assumption 1(b) and the choice of γ , the same arguments as
in [25], pages 93–95, can be repeated to bound the directional derivatives q

(2)
·,(k,�) ·

∇φε . In particular, for every (k, �) /∈ I(2) there exists a constant ĉ(k,�) < ∞ such
that for all x ∈ (R+)n−1 and all ε ∈ (0,1),

q
(2)
·,(k,�) · ∇φε(x) ≥ −ĉ(k,�).

Here the constant ĉ(k,�) depends on A,Q,Q(2), γ and δ, but does not depend on x

nor ε. If (k, �) ∈ I(2), then by definition q
(2)
·,(k,�) is the zero vector, and thus q

(2)
·,(k,�) ·

∇φε = 0. Plugging these bounds into (46) and taking expectation we get that

E
[
φε

(
Ẑ(τm)

) − φε

(
Ẑ(0)

)]
≥ −(ln ε + 1)

n−1∑
j=1

cjE

[∫ τm

0
1{‖Ẑ(s)‖<εβj } dÎ

∞,1
j (s)

]
(48)

−
n−1∑
j=1

ĉjE
[
Î

∞,1
j (τm)

] − ∑
(k,�)/∈I(2)

ĉ(k,�)E
[
Î

∞,2
k,� (τm)

]
.

The left-hand side of (48) is bounded as ε → 0 since φε is uniformly bounded on
compact subsets of (R+)n−1, while the last two terms in (48) are independent of ε.
So dividing (48) by −(ln ε + 1) and letting ε → 0, we get that

lim
ε→0

n−1∑
j=1

cjE

[∫ τm

0
1{‖Ẑ(s)‖<εβj } dÎ

∞,1
j (s)

]
≤ 0.
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Each term in the sum above is nonnegative and cj > 0, so by Fatou’s lemma it
follows that ∫ τm

0
1{Ẑj ′ (s)=0,j ′∈[n−1]} dÎ

∞,1
j (s) = 0

for every j ∈ [n − 1] a.s. By letting m → ∞ we have that∫ ∞
0

1{Ẑj ′ (s)=0,j ′∈[n−1]} dÎ
∞,1
j (s) = 0

for every j ∈ [n − 1] a.s. Finally, by using the backward induction argument
of [25], Lemma 5, it follows that with probability one, for all j ∈ [n − 1] and
J ⊆ [n − 1] such that |J | ≥ 2 we have that∫ ∞

0
1{Ẑj ′ (s)=0,j ′∈J } dÎ

∞,1
j (s) = 0.

Together with (37), this implies (44). �

3.2. General setup. In this last subsection, we introduce a much more general
class of particle systems which converge to appropriate multidimensional sticky
Brownian motions in the sense of Theorem 1. We now allow for nonexponential
interarrival times between the jumps of the particles and for dependence between
the arrival times of the jumps for different particles.

To define this more general class of particle systems, we introduce the following
parameters: n ∈ N for the number of particles as before; a > 0; λL

i and λR
i for

i ∈ [n]; c
L,L
i,i′ , c

L,R
i,i′ and c

R,R
i,i′ for i, i′ ∈ [n]; and finally θL

i,j and θR
i,j for i ∈ [n],

j ∈ [n − 1]. We fix a value M > 0 of the scaling parameter. The random variables
and processes we define next all depend on M , but for the sake of readability we
mostly do not denote this dependence explicitly.

We let {uL(k), k ∈ N} and {uR(k), k ∈ N} be two independent sequences of i.i.d.
random vectors with values in (0,∞)n (the interarrival times between jumps to the
left and to the right when there are no collisions), and for i ∈ [n], j ∈ [n − 1], let
{wL

i,j (k), k ∈ N} and {wR
i,j (k), k ∈ N} be two independent families of i.i.d. random

variables taking values in (0,∞) (the interarrival times between jumps to the left
and to the right when there is a collision). We assume that

E
[
uL

i (1)
] =

(
a + λL

i√
M

)−1

, E
[
uR

i (1)
] =

(
a + λR

i√
M

)−1

,

cov
(
uL

i (1), uL
i′ (1)

) = c
L,L
i,i′ , cov

(
uR

i (1), uR
i′ (1)

) = c
R,R
i,i′ ,

cov
(
uL

i (1), uR
i′ (1)

) = c
L,R
i,i′ ,

E
[
wL

i,j (1)
] = (

θL
i,j

)−1 and E
[
wR

i,j (1)
] = (

θR
i,j

)−1
.
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Next, define the corresponding partial sum processes

UL
i (0) = 0, UL

i (�) =
�∑

k=1

uL
i (k),

UR
i (0) = 0, UR

i (�) =
�∑

k=1

uR
i (k),

WL
i,j (0) = 0, WL

i,j (�) =
�∑

k=1

wL
i,j (k),

WR
i,j (0) = 0, WR

i,j (�) =
�∑

k=1

wR
i,j (k)

for all i ∈ [n], j ∈ [n − 1], and also the corresponding renewal processes

SL
i (t) = max

{
k ≥ 0 :UL

i (k) ≤ t
}
, SR

i (t) = max
{
k ≥ 0 :UR

i (k) ≤ t
}
,

T L
i,j (t) = max

{
k ≥ 0 :WL

i,j (k) ≤ t
}
, T R

i,j (t) = max
{
k ≥ 0 :WR

i,j (k) ≤ t
}
.

We now define the particle system for any fixed value of the scaling parameter
M > 0 according to

dXM
i (t)

= 1√
M

1{XM
k (t)+(1/

√
M)<XM

k+1(t),k∈[n−1]} d
(
SR

i (Mt) − SL
i (Mt)

)
(49)

+ 1√
M

n−1∑
j=1

1{XM
i (t)+(1/

√
M)<XM

i+1(t),X
M
j (t)+(1/

√
M)=XM

j+1(t)} dT R
i,j (

√
Mt)

− 1√
M

n−1∑
j=1

1{XM
i−1(t)+(1/

√
M)<XM

i (t),XM
j (t)+(1/

√
M)=XM

j+1(t)} dT L
i,j (

√
Mt),

for i ∈ [n]. Note that the particle configuration(
XM

1 (t),XM
2 (t), . . . ,XM

n (t)
)

is an element of the discrete wedge WM for any t ≥ 0.
Intuitively, this general particle system behaves as follows. When apart, the par-

ticles jump on the rescaled lattice Z/
√

M with jump rates of order M ; these jumps
are governed by the renewal processes SL

i and SR
i , i ∈ [n], and thus the movements

of the particles are not necessarily independent, and not necessarily governed by
Poisson processes. However, when a collision occurs (i.e., two particles are on ad-
jacent sites), then the system experiences a slowdown, with the particles moving
with jump rates of order

√
M ; these jumps are governed by the renewal processes
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T L
i,j and T R

i,j , i ∈ [n], j ∈ [n − 1], and thus the movements of the particles are
independent, but not necessarily governed by Poisson processes.

The particle system (49) indeed generalizes (2), as the following parameter
specifications show. If λL

i = λR
i = 0 for i ∈ [n], cL,L

i,i′ = c
L,R
i,i′ = c

R,R
i,i′ = 0 whenever

i �= i ′, cL,L
i,i = c

R,R
i,i = a−2 and c

L,R
i,i = 0 for i ∈ [n], and all interarrival times above

are independent exponential random variables with appropriate means, then (49)
reduces to (2).

For the extension of our convergence theorem to particle systems as in (49), we
need the following moment assumption on the interarrival times between jumps.
This assumption is needed in order to have uniform integrability of the appropriate
sequences of random variables.

ASSUMPTION 2. Assume that there exists δ > 0 such that

sup
M>0

max
i∈[n]

(
E

[
uL

i (1)2+δ] +E
[
uR

i (1)2+δ]) < ∞,

sup
M>0

max
i∈[n],j∈[n−1]

(
E

[
wL

i,j (1)2+δ] +E
[
wR

i,j (1)2+δ]) < ∞.

Under Assumption 2 we have the following convergence result, which general-
izes Theorem 1.

THEOREM 7. Suppose that Assumptions 1 and 2 hold, and that the initial
conditions {XM(0),M > 0} are deterministic and converge to a limit x ∈ W as
M → ∞. Then the laws of the paths of the particle systems {XM(·),M > 0} de-
fined in (49) converge in D([0,∞),Rn) to the law of the unique weak solution of
the system of SDEs

dXi(t) = 1{X1(t)<···<Xn(t)}
((

λR
i − λL

i

)
dt + a3/2 dWi(t)

)
(50)

+
n−1∑
j=1

1{Xj (t)=Xj+1(t)}vi,j dt

for i ∈ [n], taking values in W and starting from x. Here, the vector W =
(W1,W2, . . . ,Wn) is a Brownian motion in R

n with zero drift vector and diffusion
matrix given by

C= (ci,i′) = (
c
L,L
i,i′ + c

L,R
i,i′ + c

L,R
i′,i + c

R,R
i,i′

)
and vi,j is as in (3).

The existence and uniqueness of a weak solution to the system of SDEs given
by (50) is proven in Theorem 3, so Theorem 7 is a consequence of Proposition 8
below, which is the appropriate generalization of Proposition 6 in Section 3.1.
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As in Section 3.1, we need to study an appropriate decomposition of the particle
dynamics. For each i ∈ [n], we write

XM
i (t) = XM

i (0) + AM
i (t) +

n−1∑
j=1

C
R,M
i,j (t) −

n−1∑
j=1

C
L,M
i,j (t)

+
n−1∑
j=1

�
R,M
i,j (t) −

n−1∑
j=1

�
L,M
i,j (t),

where now

AM
i (t) := 1√

M

∫ t

0
1{XM

k (s)+(1/
√

M)<XM
k+1(s),k∈[n−1]} d

(
SR

i (Ms) − SL
i (Ms)

)
,

C
R,M
i,j (t) := θR

i,j I
R,M
i,j

:= θR
i,j

∫ t

0
1{XM

i (s)+(1/
√

M)<XM
i+1(s),X

M
j (s)+(1/

√
M)=XM

j+1(s)} ds,

�
R,M
i,j (t) := 1√

M

∫ t

0
1{XM

i (s)+(1/
√

M)<XM
i+1(s),X

M
j (s)+(1/

√
M)=XM

j+1(s)} dT
R

i,j (
√

Ms),

T
R

i,j (t) := T R
i,j (t) − θR

i,j t,

and the processes C
L,M
i,j , I

L,M
i,j , �

L,M
i,j and T

L

i,j are defined similarly to C
R,M
i,j ,

I
R,M
i,j , �

R,M
i,j and T

R

i,j , respectively. The following proposition is the appropriate
generalization of Proposition 6 to the present framework.

PROPOSITION 8. Suppose that Assumptions 1 and 2 hold, and that the initial
conditions {XM(0),M > 0} are deterministic and converge to a limit x ∈ W as
M → ∞. Then the family{(

XM,AM, IL,M, IR,M,�L,M,�R,M)
,M > 0

}
(51)

is tight in D4n2−2n. Moreover, every limit point(
X∞,A∞, IL,∞, IR,∞,�L,∞,�R,∞)

satisfies the following for each i ∈ [n]:
X∞

i (·) =
∫ ·

0
1{X∞

1 (s)<···<X∞
n (s)}

((
λR

i − λL
i

)
ds + a3/2 dWi(s)

)
(52)

+
n−1∑
j=1

vi,j

∫ ·
0

1{X∞
j (s)=X∞

j+1(s)} ds,

A∞
i (·) =

∫ ·
0

1{X∞
1 (s)<···<X∞

n (s)}
((

λR
i − λL

i

)
ds + a3/2 dWi(s)

)
,(53)
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I
L,∞
i,j (·) =

∫ ·
0

1{X∞
j (s)=X∞

j+1(s)} ds, j ∈ [n − 1] \ {i − 1},(54)

I
R,∞
i,j (·) =

∫ ·
0

1{X∞
j (s)=X∞

j+1(s)} ds, j ∈ [n − 1] \ {i},(55)

I
L,∞
i,i−1(·) = I

R,∞
i,i (·) = 0,

�
L,∞
i,j (·) = �

R,∞
i,j (·) = 0, j ∈ [n − 1],

with a Brownian motion W = (W1,W2, . . . ,Wn) as in the statement of Theorem 7.

PROOF. One can proceed as in the proof of Proposition 6, so we only explain
the arguments which are different. First, note that Theorem 14.6 in [4] and its proof
extend to the case of the multidimensional renewal processes{

SL
i

}
i∈[n],

{
SR

i

}
i∈[n],

{
T L

i,j

}
i∈[n],j∈[n−1],

{
T R

i,j

}
i∈[n],j∈[n−1],

yielding the joint convergence of{(
M−1/2(

SR
i (Mt) − SL

i (Mt)
)
, t ≥ 0

)}
i∈[n],{(

M−1/4T
L

i,j (
√

Mt), t ≥ 0
)}

i∈[n],j∈[n−1],
and {(

M−1/4T
R

i,j (
√

Mt), t ≥ 0
)}

i∈[n],j∈[n−1]
to appropriate Brownian motions. The rest of steps 1 and 2 in the proof of Propo-
sition 6 carry over to the present setting in a straightforward manner.

Now, one needs to show that every limit point(
X∞,A∞, IL,∞, IR,∞,�L,∞,�R,∞)

satisfies 〈
X∞

i ,X∞
i′

〉
(·) = 〈

A∞
i ,A∞

i′
〉
(·) = a3ci,i′

∫ ·
0

1{X∞
1 (s)<···<X∞

n (s)} ds.

To this end, one can first proceed as in step 3 in the proof of Proposition 6 to show
that

d
〈
X∞

i ,X∞
i′

〉 = ci,i′

cj,j
d
〈
X∞

j

〉
, i, i ′ ∈ [n], j ∈ [n].(56)

Next, one can invoke the Portmanteau theorem as before to conclude that for all
i ∈ [n] and 0 ≤ t1 < t2,

a3ci,i

∫ t2

t1

1{X∞
1 (s)<···<X∞

n (s)} ds ≤ 〈
X∞

i

〉
(t2) − 〈

X∞
i

〉
(t1) ≤ a3ci,i(t2 − t1).(57)

Moreover, since the measures d〈X∞
j 〉, j ∈ [n − 1], assign zero mass to the sets

{t ≥ 0 :X∞
j (t) = X∞

j+1(t)}, j ∈ [n − 1], respectively, (56) and (57) suffice to iden-
tify all quadratic covariation processes 〈X∞

i ,X∞
i′ 〉, i, i′ ∈ [n]. Similarly, one can
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identify the bounded variation parts of the processes A∞
i , i ∈ [n], as multiples of

the quadratic variation processes 〈X∞
i 〉, i ∈ [n], respectively. The rest of the proof

can be carried out by following the arguments in step 4 in the proof of Proposi-
tion 6. �
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